Skip to main content Accessibility help

Optical characterization using ellipsometry of Si nanocrystal thin layers embedded in silicon oxide

  • E. Agocs (a1) (a2), P. Petrik (a1), M. Fried (a1) and A. G. Nassiopoulou (a3)


We have developed optical models for the characterization of grain size in nanocrystal thin films embedded in SiO2 and fabricated using low pressure chemical vapor deposition of Si from silane on a quartz substrate, followed by thermal oxidation. The as-grown nanocrystals thin film on quartz was composed of a two-dimensional array of Si nanocrystals (Si-NC) showing columnar structure in the z-direction and touching each other in the x-y plane. The nanocrystal size in the z-direction was equal to the Si nanocrystal film thickness, changing by the deposition time, while their x-y size was almost equal in all the samples, with small size dispersion. After high temperature thermal oxidation, a thin silicon oxide film was formed on top of the nanocrystals layer. The aim of this work was to measure the grain size and the nanocrystallinity of the Si nanocrystal thin films, a quantity related to the change of the dielectric function. We used a definition for the nanorcystallinity that is related to the effective medium analysis (EMA) of the material. The optical technique used for the investigations was spectroscopic ellipsometry. To measure the above sample properties the thickness and composition of several layers on a quartz substrate had to be determined by proper modeling of this complex system. We found that the nanocrystallinity (defined as the ratio of nc-Si/(c-Si+nc-Si) decreases systematically with increasing the Si-NC layer thickness. Using this approach we are sensitive to the lifetime broadening of electrons caused by the scattering on the grain boundaries, and not to the shift of the direct interband transition energies due to quantum confinement.



Hide All
1. Schmidt, J. U., and Schmidt, B., Mater. Sci. Eng. B 101 (2003) 28.10.1016/S0921-5107(02)00698-0
2. Pacifici, D., Irrera, A, Franzó, G., Miritello, M., Iacona, F., and Priolo, F., Physica E 16 (2003) 331340.10.1016/S1386-9477(02)00615-X
3. Irrera, A., Miritello, M., Pacifici, D., Franzó, G., Priolo, F., Iacona, F., Sanfilippo, D., Di Stefano, G., and Fallica, P. G., Nucl. Instr. And Meth. B 216 (2004) 222227.10.1016/j.nimb.2003.11.038
4. Pagonis, D. N., Nassiopoulou, A. G., and Kaltsas, G., J. Electrochem. Soc. 151(8), H 174H179 (2004).10.1149/1.1764571
5. Lioudakis, E., Othonos, A., Nassiopoulou, A. G., Lioutas, Ch. B., and Frangis, N., Appl. Phys. Lett. 90, 191114 (2007).10.1063/1.2738383
6. Lioudakis, E., Othonos, A., and Nassiopoulou, A. G., Appl. Phys. Lett. 90, 171103 (2007).10.1063/1.2728756
7. Aspnes, D. E., Thin Solid Films, 89 (1982) 249262.10.1016/0040-6090(82)90590-9
8. Lioutas, Ch. B., Vouroutzis, N., Tsiaoussis, I., Frangis, N., Gardelis, S., and Nassiopoulou, A. G., Phys. Stat. Sol. (A) 205, No.11, 26152620 (2008).10.1002/pssa.200880224
9. Jellison, G. E. Jr., Chisholm, M. F., and Gorgatkin, S. M., Appl. Phys. Lett. 62 (1993) 3348.10.1063/1.109067
10. Adachi, S., Mori, Hirofumi, and Takahashi, Mitsutoshi. J. Appl. Phys. 93, 115 (2003).10.1063/1.1527215
11. Djurisic, A. B., Li, E. H., Thin Solid Films 364 (2000) 239243.10.1016/S0040-6090(99)00919-0
12. Petrik, P., Fried, M., Vazsonyi, E., Basa, P., Lohner, T., Kozma, P., and Makkai, Zs., J. Appl. Phys. 105, 024908 (2009).10.1063/1.3068479



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed