Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T11:39:35.986Z Has data issue: false hasContentIssue false

Optical Characterization of a Spheroidal Nanoparticle on a Substrate

Published online by Cambridge University Press:  21 February 2011

Carlos E. Román-Velázquez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, . F. 01000 MEXICO
Cecilia Noguez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, . F. 01000 MEXICO
Rubén G. Barrera
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, . F. 01000 MEXICO
Get access

Abstract

With the help of a spectral formalism recently formulated, we study the effects in the optical response of the material properties of a nanoparticle lying over a substrate. A spectral representation was formulated to calculate the optical response of spheroidal nanoparticles including multipolar effects. We present our results in terms of Differential Reflectance spectra that can be compared directly with measurements. We have found that multipolar contributions depend in the shape of the particle and type of substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haberland, H., ed. Cluster of Atoms and Molecules II, Spinger Series in Chemical Physics 56, Springer Verlag, Berlin (1994).Google Scholar
2. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Springer Series y Material Sciences, Vol. 65, Springer Verlag, Berlin (1994).Google Scholar
3. Beitia, C., Borensztein, Y, Lazzari, R., Nieto, J. and Barrera, R. G., Phys. Rev. B 60, 6018 (1999).Google Scholar
4. Chan, E. C. and Marton, J. P., J. Appl. Phys. 45, 5004 (1974).Google Scholar
5. Graighead, H. G. and Niklasson, G. A. Thin Solid Films. 125, 165 (1985); J. Appl.. Phys. 55, 3382 (1984).Google Scholar
6. Yamaguchi, T., Yoshida, S. and Kinbara, A., Thin Solid. Films. 13, 261 (1972); J. Opt. Soc. Am. 61, 463 (1971); J. Opt. Soc. Am. 62, 1415 (1972).Google Scholar
7. Bagchi, A., Barrera, R.G. and Rajagopal, A.K.., Phys. Rev. B, 20, 48244833 (1979).Google Scholar
8. Bagchi, A., Barrera, R.G. and Dasgupta, B.B., Phys. Rev. Letters, 44, 14751478 (1980).Google Scholar
9. Ruppin, R., Surf. Sci. 127, 108 (1983).Google Scholar
10. Wind, M. M., Vlieger, J and Bedeaux, D., Physica 141A, 33 (1987); M. M. Wind, P. A. Bobbert, J Vlieger and D. Bedeaux, Physica 143A, 164 (1987).Google Scholar
11. Bobbert, P. A. and Vlieger, J., Physica 137A, 209, 243 (1986).Google Scholar
12. Román-Velázquez, C. E., Noguez, C. and Barrera, R. G., phys. stat. sol. (a) 175, 393 (1999); submitted to Phys. Rev. B.Google Scholar
13. Bergman, D. J., Phys. Rep. 43, 377 (1978); D. Stroud, G. W. Milton and B. R. De, Phys. Rev B 34, 5145 (1986); R. Fuchs, Phys. Rev. B 11, 1732 (1975).Google Scholar
14. Lam, J., J. Appl. Phys. 68, 392 (1990).Google Scholar