Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T08:09:39.824Z Has data issue: false hasContentIssue false

The Optical Behavior of Organic and Organometallic Molecules in Sol-Gel Matrices

Published online by Cambridge University Press:  25 February 2011

B. Dunn
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA90024 USA
E. Knobbe
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA90024 USA
J. M. McKiernan
Affiliation:
Department of Chemistry, University of California, Los Angeles, CA90024 USA
J. C. Pouxviel
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA90024 USA
J. I. Zink
Affiliation:
Department of Chemistry, University of California, Los Angeles, CA90024 USA
Get access

Abstract

The low temperatures involved in sol-gel processing have enabled organic and organometallic molecules to be incorporated in gel matrices. These molecules serve as optical probes to characterize gel chemistry and structure. The present paper describes the use of luminescence spectroscopy to detail matrix rigidity effects and protonation/deprotonation reactions during the sol-gel transition and subsequent aging processes. In separate experiments, the addition of a laser dye, rhodamine 6G, has enabled us to demonstrate lasing and optical gain in a silica gel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avnir, D., Levy, D. and Reisfeld, R., J. Phys. Chem., 88, 5956 (1984).CrossRefGoogle Scholar
2. Avnir, D., Kaufman, V.R. and Reisfeld, R., J. Non-Cryst. Solids, 74, 395 (1985).Google Scholar
3. Kaufman, V. and Avnir, D., Langmuir 2, 717 (1986).Google Scholar
4. Tani, T., Namikawa, H., Arai, K. and Makishima, A., J. Appl. Phys., 58, 3559 (1985).CrossRefGoogle Scholar
5. Makishima, A. and Tani, T., J. Am. Ceram. Soc, 69, 72 (1986).Google Scholar
6. Pope, E. J. A. and Mackenzie, J. D., MRS Bulletin, 12, 29 (1987).Google Scholar
7. Avnir, D., Kaufman, R. and Reisfeld, R., J. Non-Cryst. Solids. 2A, 395 (1985).Google Scholar
8. Santos, D. I., Aegerter, M. A., Brito Cruz, C.H., Scarparo, M. and Zarzycki, J., J. Non-Cryst. Solids, 82, 165 (1986).Google Scholar
9. McKiernan, J., Pouxviel, J.C., Dunn, B. and Zink, J.I., submitted for publication.Google Scholar
10. Wrighton, M. S. and Morse, D. L., J. Am. Chem. Soc, 101, 998 (1974);CrossRefGoogle Scholar
Giordano, P. J. and Wrighton, M. S., J. Am. Chem. Soc., 101, 2888 (1979).Google Scholar
11. Pouxviel, J. C. and Boilot, J. P., J. Mat. Sci., (in press).Google Scholar
12. Geoffroy, G.L. and Wrighton, M.S., Organometallic Photochemistry, (Academic Press, New York, 1979).Google Scholar
13. Pouxviel, J. C., Dunn, B. and Zink, J., submitted for publication.Google Scholar
14. Kano, K. and Fendler, J.H., Biochem. et Biophysica Acta 509, 289 (1978).Google Scholar
15. Kondo, H., Miwa, I. and Sunamoto, J., J. Am. Chem. Soc. 86, 4826 (1982).Google Scholar
16. Bardez, E., Goguillon, B.T., Keh, E. and Valeur, B., J. Phys. Chem. 88, 1909 (1984).Google Scholar
17. Knobbe, E.T., Barrie, J.D., Stafsudd, O.M. and Dunn, B., submitted for publication.Google Scholar