Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T11:07:08.788Z Has data issue: false hasContentIssue false

Optical and Structural Properties of CaF2:Nd Films on Si-Based Substrates

Published online by Cambridge University Press:  21 February 2011

C.-C. Cho
Affiliation:
Central Research Laboratories, Texas Instruments, P.O. Box 655936, MS 147, Dallas, Texas 75265
W.M. Duncan
Affiliation:
Central Research Laboratories, Texas Instruments, P.O. Box 655936, MS 147, Dallas, Texas 75265
H.-Y. Liu
Affiliation:
Central Research Laboratories, Texas Instruments, P.O. Box 655936, MS 147, Dallas, Texas 75265
Get access

Abstract

By thermally evaporating CaF2 and NdF3, we have grown Nd-doped CaF2 films on Si(111), A1/Si(111) and quarter-wavelength Ta2O5/SiO2 multilayer Bragg reflectors. The optical and structural properties of the CaF2:Nd films are characterized by photoluminescence spectroscopy (PL) and x-ray diffraction. The effects of different Nd concentration, growth temperatures and post-annealing were studied. Regardless of the substrates, the as-grown films show emission lines at wavelengths similar to bulk CaF2:Nd. Annealing the films at 700°C in forming gas results in a new emission pattern. Little difference between the PL spectra of polycrystalline and single crystal CaF2:Nd films is observed, indicating that the luminescence efficiency is insensitive to the crystalline quality of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schowalter, L. J. and Fathauer, R.W., CRC Critical Reviews in Solid State and Materials Sciences, 15, 367 (1989).Google Scholar
2. Cho, C.-C., Liu, H.-Y., Gnade, B.E., Kim, T.S. and Nishioka, Y., J. Vac. Sci. Technol. A 10, 769 (1992).Google Scholar
3. Müller, H.D., Schneider, J., Luth, H. and Strumpler, R., Appl. Phys. Lett. 57, 2422 (1990).Google Scholar
4. Bausá, L. E., Legros, R. and Mufioz-Yagtie, A., Appl. Phys. Lett. 59, 152 (1991).Google Scholar
5. Bausá, L. E., Fontaine, C., Daran, E. and Mufioz-Yagüe, A., J. Appl. Phys. 72, 499 (1992).Google Scholar
6. Cho, C.-C., Duncan, W. M., Lin, T.-H. and Fan, S.-K., Appl. Phys. Lett. 61, 1757 (1992).Google Scholar
7. Cho, C.-C. and Liu, H.-Y., Mat. Res. Sym. Proc. 221, 87 (1991).Google Scholar
8. Cho, C.-C., Liu, H.-Y. and Tsai, H.-L., Appl. Phys. Lett. 61, 270 (1992).Google Scholar
9. Voron'ko, Yu. K., Kamintskii, A. A. and Osiko, V. V., Sov. Phys. JETP 22, 295 (1966).Google Scholar
10. Freeth, C. A. and Jones, G. D., J. Phys. C., 15, 6833 (1982).Google Scholar
11. Kaminskii, A. A., Kornienko, L.S. and Prokhorov, A.M., Sov. Phys. JETP 21, 318 (1965).Google Scholar
12. Cho, C.-C. and Duncan, W.M., submitted to Appl. Phys. Lett.Google Scholar