Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T11:22:48.187Z Has data issue: false hasContentIssue false

Optical Addressing of High-Speed Spatial Light Modulators with Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

G. Moddel
Affiliation:
University of Colorado, Department of Electrical and Computer Engineering and Center for Optoelectronic Computing Systems, Boulder, Colorado 80309-0425
C. T. Kuo
Affiliation:
University of Colorado, Department of Electrical and Computer Engineering and Center for Optoelectronic Computing Systems, Boulder, Colorado 80309-0425
K. M. Johnson
Affiliation:
University of Colorado, Department of Electrical and Computer Engineering and Center for Optoelectronic Computing Systems, Boulder, Colorado 80309-0425
W. Li
Affiliation:
University of Colorado, Department of Electrical and Computer Engineering and Center for Optoelectronic Computing Systems, Boulder, Colorado 80309-0425
Get access

Abstract

We demonstrate the operation of a high-speed optically addressed spatial light modulator utilizing a hydrogenated amorphous silicon photosensor and a ferroelectric liquid crystal modulator. The device has numerous optical parallel processing and interconnect applications. It combines desirable resolution, switching speed, size, and contrast characteristics. The devices are driven by a square-wave voltage, such that read and write operations take place under reverse bias, and an erase operation occurs under forward bias. The capacitance associated with the photosensor plays a critical role in the device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodman, J. W., Optical Computing Short Course, OSA Annual Meeting (1986).Google Scholar
2. Tanguay, A., Proc SPIE 456, 130 (1984).Google Scholar
3. Beard, T. D., Beha, W. P., Wong, S.-Y., Appl. Phys. Lett 22, 90 (1973).Google Scholar
4. Grinberg, J. et al., Opt. Eng. 14, 217 (1975).CrossRefGoogle Scholar
5. Efron, U. et al., Proc. SPIE 388, 75 (1975).Google Scholar
6. Armitage, D., Anderson, W. W., Karr, T. J., IEEE J. Quant. Elec. QE–21, 1241 (1985).CrossRefGoogle Scholar
7. Ashley, P. R., Davis, H. J., Appl. Opt. 26, 241 (1987).CrossRefGoogle Scholar
8. Clark, N. A. and Lagerwall, S., Appl. Phys. Lett. 36, 899 (1980).CrossRefGoogle Scholar
9. Moddel, G., Johnson, K. M., and Handschy, M. A., Proc. SPIE 754, 207 (1987).CrossRefGoogle Scholar
10. Takahashi, N. S., Asada, H., Miyahara, M., and Kurita, S., Appl. Phys. Lett. 51, 1233 (1987).Google Scholar
11. Li, W., Kuo, C. T., Moddel, G., and Johnson, K. M., Proc. SPIE 936 (1988).Google Scholar
12. Lee, S. H., Esener, S. C., Title, M. A., and Drabik, T. J., Opt. Eng. 25, 250 (1986).Google Scholar
13. For example, see Papuchon, M. et al, Appl. Phys. Lett. 27, 289 (1975).Google Scholar
14. For example, see Miller, D.A.B. et al, Appl. Phys. Lett 45, 13 (1984).Google Scholar
15. Semetex Corporation, 2450 Jujita Street, Torrance, CA 90505.Google Scholar
16. Handschy, M. A., Johnson, K. M., Moddel, G. and Pagano-Staufffer, L. A., to appear in Ferroelectrics (1988).Google Scholar
17. Miller, D.A.B., personal communication (1986).Google Scholar
18. Armitage, D., Thackara, J., Clark, N. A., and Handschy, M. A., Proc. SPIE 684, 60 (1986).CrossRefGoogle Scholar
19. Johnson, K. M., Handschy, M. A., and Pagano-Stauffer, L. A., Opt. Eng. 26, 385 (1987).Google Scholar
20. Supplied by Glasstech Solar, Inc., 12441 W. 49 Ave, Wheat Ridge, CO 80033.Google Scholar
21. Clark, N. A. and Lagerwall, S. T., Ferroelectrics 59, 25 (1984).CrossRefGoogle Scholar
22. Handschy, M. A. and Clark, N. A., Ferroelectrics 59, 69 (1984).CrossRefGoogle Scholar
23. E. Merck Industries, Inc., 5 Skyline Dr., Hawthorne, NY 10523.Google Scholar