Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:06:29.041Z Has data issue: false hasContentIssue false

Online Monitoring of PVT SiC Bulk Crystal Growth Using Digital X-Ray Imaging

Published online by Cambridge University Press:  10 February 2011

P. J. Wellmann
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
M. Bickermann
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
M. Grau
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
D. Hofmann
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
T. L. Straubinger
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
A. Winnacker
Affiliation:
Materials Department VI, University of Erlangen, Martensstrasse 7, 91058 Erlangen, Germany, peter.wellmann@ww.uni-erlangen.de
Get access

Abstract

An advanced method based on x-ray imaging is presented which allows us to visualize the ongoing processes during physical vapor transport (PVT) growth of SiC. Using a high resolution and high speed x-ray imaging detector based on image plates and digital recording we are able to follow the SiC bulk single crystal growth as well as the evolution of the SiC powder source inside the inductively heated graphite crucible on-line and quasi-continuously.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tairov, Y.M. and Tsvetkov, V.F., Investigation of growth processes of ingots of silicon carbide single crystals, J. Cryst.Growth 43, 209, 1978.10.1016/0022-0248(78)90169-0Google Scholar
2. Ziegler, G., Lanig, P., Theis, D. and Weyerich, C., Single crystal growth of SiC substrate material for blue light emitting diodes, IEEE Trans. Electron. Devices 30, 277, 1983.10.1109/T-ED.1983.21117Google Scholar
3. Eckstein, R., Hofmann, D., Makarov, Y., Muiller, St. G., Pensl, G., Schmitt, E. and Winnacker, A., Analysis of the sublimation growth process of silicon carbide bulk crystals, Mat. Res. Soc. Symp. Proc. 423, 215220, 1996.10.1557/PROC-423-215Google Scholar
4. Hofmann, D., Eckstein, R., Kiölbl, M., Makarov, Y., Mtller, St. G., Schmitt, E., Winnacker, A., Rupp, R., Stein, R. and Vblkl, J., SiC-bulk growth by physical vapor transport and its global modeling, J. Cryst.Growth 174, 669674, 1997.10.1016/S0022-0248(97)00037-7Google Scholar
5. Winnacker, A., x-ray imaging with photostimulable storage phosphors and future trends, Physica Medica IX 23, 95–101, 1993.Google Scholar
6. Thorns, M., Burzlaff, H., Kinne, A., Lange, J., von Seggern, H., Spengler, R. and Winnacker, A., An improved x-ray image plate detector for diffractometry, Mater.Sci.Forum 107 (1), 228231, 1995.Google Scholar
7. Barber, P.G., Crouch, R.K., Fripp, A.L., Debnam, W.J., Berry, R.F. and Simchick, R., A procedure to visualize the melt-solid interface in Bridgeman grown germanium and lead tin telluride, J. Cryst.Growth 74, 228230, 1986.10.1016/0022-0248(86)90270-8Google Scholar
8. Kakimoto, K., Eguchi, M., Watanaba, H. and Hibiya, T., In-situ observation of impurity diffusion boundary layer in silicon Czrochalski growth, J. Cryst.Growth 99, 665669, 1990.10.1016/S0022-0248(08)80003-6Google Scholar
9. Campbell, T.A. and Koster, J.N., Visualization of liquid-solid interface morphologies in gallium subject to natural convection, J. Cryst.Growth 140, 414425, 1994.10.1016/0022-0248(94)90318-2Google Scholar