Skip to main content Accessibility help
×
Home

On the Thermoelectric Potential of Inverse Clathrates

  • Matthias Falmbigl (a1), Peter F Rogl (a2), Ernst Bauer (a3), Martin Kriegisch (a4), Herbert Müeller (a5) and Silke Paschen (a6)...

Abstract

In the context of a general survey on the thermoelectric potential of cationic clathrates, formation, crystal chemistry and physical properties were investigated for novel inverse clathrates deriving from Sn19.3Cu4.7P22I8. Substitution of Cu by Zn and Sn by Ni was attempted to bring down electrical resistivity and lower thermal conductivity. Materials were synthesized by mechanical alloying using a ball mill and hot pressing. Structural investigations for all specimens confirm isotypism with the cubic primitive clathrate type I structure (lattice parameters a = ˜1.1 nm and space group type Pm-3n). Studies of transport properties evidence holes as the majority charge carriers. Thermal expansion data, measured in a capacitance dilatometer from 4 to 300 K on Sn19.3Cu1.7Zn3P19.92.1I8, compare well with literature data available for Sn24P19.62.4Br8 and for an anionic type I clathrate Ba8Zn8Ge38. From the rather complex crystal structure including split atom sites and lattice defects thermal conductivity in inverse clathrates is generally low. Following Zintl rules rather closely inverse clathrates tend to be semiconductors with attractive Seebeck coefficients. Thus for thermoelectric applications the main activity will have to focus on achieving low electrical resistivity in a compromise with still sufficiently high Seebeck coefficients.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the Thermoelectric Potential of Inverse Clathrates
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the Thermoelectric Potential of Inverse Clathrates
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the Thermoelectric Potential of Inverse Clathrates
      Available formats
      ×

Copyright

References

Hide All
1 Rowe, D. M., Ed., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 2006).
2 Venkatasubramanian, R., Siivola, E., O'Quinn, B., “Superlattice Thin-Film Thermoelectric Material and Device Technologies”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 49.149.15.
3 Gelbstein, Y., Dashevsky, Z., Dariel, M.P., Phys. Stat. Sol. (RRL) 1(6), 232–234 (2007).
4 Prenninger, P., Grytsiv, A., Rogl, P., Bauer, E., “TE-Materials with Better Efficiencies and Lower Costs - a Contradiction?, paper presented at the 1st Conference: Thermoelectrics -A Chance for the Automotive Industry?, Berlin, 23 – 24 October 2008.
5 Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998)10.1063/1.121747
6 Rogl, P., “Formation and Crystal Chemistry of Clathrates”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 32–1–32.
7 Shevelkov, A.V., Russian Chemical Reviews 77(1), 119 (2008).10.1070/RC2008v077n01ABEH003746
8 Menke, H., Schnering, H.G. von, Zeitschrift fuer Anorganische und Allgemeine Chemie 395(2-3), 223–38 (1973).
9 Kovnir, K.A., Shevelkov, A.V., Russian Chemical Reviews 73(9), 923938 (2004).
10 Shatruk, M.M., Kovnir, K.A., Lindsjoe, M., Presniakov, I.A., Kloo, L.A., Shevelkov, A.V., J. Solid State Chem. 161, 233242 (2001).
11 Zaikina, J.V., Schnelle, W., Kovnir, K.A., Olenev, A.V., Grin, Y., Shevelkov, A.V., Solid State Sciences 9(8), 664671 (2007).
12 Zaikina, J.V., Kovnir, K.A, Sobolev, A.V., Presniakov, I.A., Prots, Y., Baitinger, M., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Grin, Y., Shevelkov, A.V., Chemistry-A European Journal 13(18), 5090–9 (2007).10.1002/chem.200601772
13 Mudryk, Ya., Rogl, P., Paul, C., Berger, S., Bauer, E., Hilscher, G., Godart, C., Noel, H., J. Phys. Condens. Matter 14, 79918004 (2002).
14 Kovnir, K.A., Abramchuk, N.S., Zaikina, J.V., Baitinger, M., Burkhardt, U., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Dikarev, E.V., Shevelkov, A.V., Z. Kristallographie 221, 527532 (2006).
15 Zaikina, J.V., Kovnir, K.A., Schwarz, U., Borrmann, H., Shevelkov, A.V., Z. Kristallographie - New Crystal Structures 222(3), 177179 (2007).
16 Duenner, J., Mewis, A., Z. Anorg. Allg. Chemie 621, 191 (1995).
17 Carrillo-Cabrera, W., Budnyk, S., Prots, Y., Grin, Y., Z. Anorg. Allg. Chem. 630, 7226 (2004).
18 Kauzlarich, S.M., Ed. “Chemistry, Structure and Bonding of Zintl Phases and Ions”, Wiley-VCH, N.Y. (1996).
19 Kovnir, K.A., Sobolev, A.V., Presniakov, I.A., Lebedev, O.I., Tendeloo, G. Van, Schnelle, W., Grin, Y., Shevelkov, A.V., Inorganic Chemistry 44(24), 87868793 (2005).10.1021/ic051160k
20 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Popovkin, B.A., Zhurnal Neorganicheskoi Khimii 45(2), 203209 (2000).
21 Melnychenko-Koblyuk, N., Grytsiv, A., Berger, St., Kaldarar, H., Michor, H., Röhrbacher, F., Royanian, E., Bauer, E., Rogl, P., Schmid, H., Giester, G., J. Phys. Cond. Mat. 19, 046203-26, (2007).
22 Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R., TYPIX standardized data and crystal chemical characterization of inorganic structure types (Berlin: Springer) (1994).
23 Kovnir, K.A., Shatruk, M.M., Reshetova, L.N., Presniakov, I.A., Dikarev, E.V., Baitinger, M., Haarmann, F., Schnelle, W., Baenitz, M., Grin, Y., Shevelkov, A.V., Solid State Sciences 7(8), 957968 (2005).
24 Mott, N.F., Phil Mag. B19, 835 (1984); The Physics of Hydrogenated Amorphous Silicon Vol. II. ed. by J. D. Joannopoulos and G. Luckowsky, Topics in Applied Physics, 56(Springer, Berlin Heidelberg 1984), p. 169.
25 Melnychenko-Koblyuk, N., Grytsiv, A., Fornasari, L., Kaldarar, H., Michor, H., Röhrbacher, F., Koza, M., Royanian, E., Bauer, E., Rogl, P., Rotter, M., Schmid, H., Marabelli, F., Devishvili, A., Doerr, M., Giester, G., J. Phys. Cond. Mat. 19, 216223 1–26 (2007).
26 Callaway, J., Baeyer, H. C. von, Phys. Rev. 120, 1149 (1960).
27 Cahill, D., Pohl, R., Solid State Commun. 70, 927 (1989).
28 Snyder, G.J., Toberer, E.S., Nature Materials 7, 105114 (2008).
29 Rotter, M., Müller, H., Gratz, E., Doerr, M., Loewenhaupt, M., Rev. Sci. Instruments 69(7), 2742–45 (1998).
30 Kovnir, K.A., Zaikina, J.V., Reshetova, L.N., Olenev, A.V., Dikarev, E.V., Shevelkov, A.V., Inorganic Chemistry 43(10), 32303236 (2004).
31 Mukherjee, G.D., Bansal, C., Chatterjee, A., Phys. Rev. Lett. 76(11), 18761879 (1996).
32 Reny, E., Yamanaka, S., Cros, Ch., Pouchard, M., AIP Conference Proceedings 590 (Nanonetwork Materials), 499502 (2001).
33 Kishimoto, K., Koyanagi, T., Akai, K., Matsuura, M., Japanese Journal of Applied Physics Part 2: Letters & Express Letters 46(29-32), L746–L748 (2007).
34 Kishimoto, K., Akai, K., Muraoka, N., Koyanagi, T., Matsuura, M., Applied Physics Letters 89(17), 172106/1–172106/3 (2006).
35 Chu, T.L., Chu, S.S., Ray, R.L., Journal of Applied Physics 53(10), 7102–3 (1982).
36 Kishimoto, K., Arimura, S., Koyanagi, T., Applied Physics Letters 88(22), 222115/1–222115/3 (2006).10.1063/1.2209207
37 Jin, Z., Tang, Z., Litvinchuk, A., Guloy, A.M., Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, (2008).
38 Menke, H., Schnering, H.G. von, Zeitschrift Anorg. Allg. Chemie 424, 108 (1976).
39 Nesper, R., Curda, J., Schnering, H.G. von, Angew. Chemie 25, 369 (1986).
40 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Presniakov, I.A., Popovkin, B.A., Inorganic Chemistry 38(15), 34553457 (1999).
41 Deng, S., Tang, X., Li, P., Zhang, Q., Journal of Applied Physics 103, 073503 (2008).

Keywords

On the Thermoelectric Potential of Inverse Clathrates

  • Matthias Falmbigl (a1), Peter F Rogl (a2), Ernst Bauer (a3), Martin Kriegisch (a4), Herbert Müeller (a5) and Silke Paschen (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed