Skip to main content Accessibility help

On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation

  • E.P. Gusev (a1) (a2), H.C. Lu (a3), T. Gustafsson (a3) and E. Garfunkel (a1)


The growth of ultra-thin oxide films by the thermal oxidation of silicon has been studied by low and medium energy ion scattering spectroscopies (LEIS and MEIS) and X-ray photoelectron spectroscopy (XPS). To help elucidate the diffusional and mechanistic aspects of oxide growth we have used sequential isotope oxidation (18O2 followed by 16O2). LEIS demonstrates that both 18O and 16O atoms are on the silicon surface under our growth conditions. MEIS also distinguishes 18O from 16O and gives a depth distribution for both with high accuracy. Our results show that several key aspects of the Deal-Grove model (oxygen diffusion to the Si-SiO2 interface and oxide formation at the interface) are consistent with our results for 50Å films. For very thin oxide films (15Å or less), we found a mixed isotopic distribution in the film, demonstrating more complex oxidation behavior.



Hide All
1 Balt, P.. The Si-SiO2 System (North-Holland, Amsterdam, 1988).
2 Engel, T., Surf. Sci. Rept. 18,91 (1993).
3 Irene, E., CRC Crit. Rev. Sol. St. Mat. Sci. 14,175 (1988).
4 Lucovsky, G., Fitch, J. F., Kobeda, E., and Irene, E.. in The Physics and Chemistry of SiO2 and the Si-SiO2 interface (eds. Helms, C.R. and Deal, D.E.) p. 139 (Plenum Press, NY, 1988).
5 Mott, N. F., Rigo, S., Rochet, F., and Stoneham, A. M., Phil. Mag. B 60,189 (1989).
6 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36,3770 (1965).
7 According to some recent results this deviation may be caused by the limited accuracy of ellipsometry for thin silica films (Dutta, T. and Ravindra, N.M., Phys. Stat. Sol. A134, 447, 1992; S.C. Kao, and R.H. Doremus, in The Physics and Chemistry of SiO2 and Si-SiO2 Interface, C.R. Helms and B.E. Deal, eds., Plenum Press, N.Y., 1993, p.23).
8 Hoppers, M. A., Clarke, R. A., and Young, L., J. Electrochem. Soc. 122,1216 (1975).
9 Han, C. J. and Helms, C. R., J. Electrochem. Soc. 135,1824 (1988).
10 Delarious, J. M., Helms, C. R., Kao, D. B., and Deal, B. E., Appl. Surf. Sci. 39, 89 (1989).
11 Revesz, A. G. and Hughes, H. L., J. Non-Cr. Solids 71, 87 (1985).
12 Irene, E. A., J. Appl. Phys. 54, 5416 (1983).
13 Kamohara, S. and Kamigaki, Y., J. Appl. Phys. 69, 7871 (1991).
14 Bjorkman, C. H., Fitch, J. T., and Lucovsky, G., Appl. Phys. Lett. 56, 1983 (1990).
15 Leroy, B., Phil. Mag. B 55, 159 (1987).
16 Tamura, T., Tanaka, N., Tagawa, M., Ohmae, N., and Umeno, M., Jpn. J. Appl. Phys. 32, 12 (1993).
17 Wolters, D. R. and Zegers-van Duynhoven, A. T. A., Appl. Surf. Sci. 39, 81 (1989).
18 Srivastava, J. K., Prasad, M., and Wagner, J. B. Jr, J. Electrochem. Soc. 132, 955 (1985).
19 Atkinson, A., Rev. Mod. Phys. 57, 437 (1985).
20 Massoud, H. Z., Plummer, J. D., and Irene, E. A., J. Electrochem. Soc. 132, 2693 (1985).
21 Ghez, R. and van der Meulen, Y. J., J. Electrochem. Soc 119, 1100 (1972).
22 Moharir, S. S. and Chandorkar, A. N., J. Appl. Phys. 65, 2171 (1989).
23 Schafer, S. A. and Lyon, S. A., Appl. Phys. Lett. 47, 154 (1985).
24 Stoneham, A. M., Grovenor, C. R. M., and Cerezo, A., Phil. Mag. B 55, 201 (1987).
25 Fouss, P. H., Norton, H. J., Brennan, S., and Fisher-Colbrie, A., Phys. Rev. Lett. 60, 600 (1988).
26 Ourmazd, A., Taylor, D. W., Rentscheir, J. A., and J. Bevk, Phys. Rev. Lett 59, 743 (1987).
27 Himpsel, F. J., Feely, F. R. M., Taleb-Ibrahimi, A., Yarmoff, J. A., and Hollinger, G., Phys. Rev. B 38, 6084 (1988).
28 Rochet, F., Rigo, S., Froment, M., d’Anterroches, C., Maillot, C., Roulet, H., and Dufour, G., Adv. Phys. 35, 339 (1986).
29 Costello, J. A. and Tressler, R. E., J. Electrochem. Soc. 131, 1944 (1984).
30 Cristy, S. S. and Condon, J. B., J. Electrochem. Soc. 128, 2170 (1981).
31 Rochet, F., Agius, B., and Rigo, S., J. Electrochem. Soc. 131, 914 (1984).
32 Rosencher, E., Straboni, A., Rigo, S., and Amsel, G., Appl. Phys. Lett. 34, 254 (1979).
33 Trimaille, I. and Rigo, S., Appl. Surf. Sci. 39, 65 (1989).
34 Niehus, H., Heiland, W., and Taglauer, E., Surf. Sci. Rept. 17, (1992).

On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation

  • E.P. Gusev (a1) (a2), H.C. Lu (a3), T. Gustafsson (a3) and E. Garfunkel (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed