Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T10:23:05.218Z Has data issue: false hasContentIssue false

On the Interaction of Intrinsic and Extrinsic Gettering Schemes in Silicon

Published online by Cambridge University Press:  21 February 2011

K. H. Yang
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533
T. Y. Tan
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

We report some results of an experiment designed to study the interaction of extrinsic-gettering (EG) and intrinsic-gettering (IG) schemes. We found that mechanical abrasion introduces interstitial type dislocations into the wafer backside, and produces a concave wafer frontside. The EG dislocation network enhances SiO2 precipitation which is responsible for the IG activity. The enhancement is most significant near the wafer backside. The interaction arises most probably because the dislocation network serves as a very efficient source/sink for point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

1. Tan, T. Y., Gardner, F. R. and Tice, W. K., Appl. Phys. Lett. 30, 175 (1977).10.1063/1.89340CrossRefGoogle Scholar
2. Yang, K. H., Kappert, H. F. and Schwuttke, G., Phys. Stat. Sol. (a) 50, 221 (1978).CrossRefGoogle Scholar
3. Lawrence, J. E., Trans. Metall. Soc. AIME 242, 484 (1968).Google Scholar
4. Yang, K. H. and Schwuttke, G. H., Phys. Stat. Sol. (a), 58, 127 (1980).CrossRefGoogle Scholar
5. Takano, Y., Kozuka, H., Ogirima, M. and Maki, M., in ”Semiconductur Si 1981,” Huff, H. R., Kriegler, R. J. and Takeiski, Y. eds (Electrochem. Soc. Pennington, 1981) p. 743.Google Scholar
6. Dyson, W., O'Grady, S., Ross, J. A., Hellwig, L. G. and Moody, J. W., in ”VLSI Science and Technology/1984),” Bean, K. K. and Rozgonyi, G. A. eds (Electrochem. Soc. Pennington, 1984) p. 107.Google Scholar
7. Magee, T. J., Leung, C., Kawayoski, H., Furman, B. K. and Evans, C. A. Jr., Appl. phys. Lett, 38, 891 (1981).10.1063/1.92218Google Scholar
8. Mikkelsen, J. C. Jr., Appl. phys. Lett, 42, 695 (1983).10.1063/1.94076CrossRefGoogle Scholar
9. Yang, K. H., J. Electrochem. Soc., 131, 1140 (1984)10.1149/1.2115767CrossRefGoogle Scholar
10. Yang, K. H., “An Optical Imaging Method for Wafer Warpage MeasuremEnt” J. Electrochem. Soc. to be published.Google Scholar
11. Bond, W. L., Acta Cryst., 13, 814 (1960)10.1107/S0365110X60001941Google Scholar
12. Segmuller, A., “Advances in X-Ray Analysis,” 13, 455, Plenum Press, NY (1970).10.1007/978-1-4613-9963-6_27Google Scholar