Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T18:58:03.876Z Has data issue: false hasContentIssue false

On the GHz Frequency Response in Nanocrystalline FeXN Ultra-Soft Magnetic Films

Published online by Cambridge University Press:  01 February 2011

N.G. Chechenin
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
C.B. Craus
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
A.R. Chezan
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
T. Vystavel
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
D.O. Boerma
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
J.Th. M. De Hosson
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
L. Niesen
Affiliation:
Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
Get access

Abstract

The periodicity and angular spread of the in-plane magnetization for ultrasoft nanocrystalline FeZrN films were estimated from an analysis of the ripple structure, observed in Lorentz transmission electron microscopy (LTEM) images. The influence of the micromagnetic ripple on the ferromagnetic resonance (FMR) width is analyzed using an approach based on the Landau-Lifshitz equation. A strong dependence of the resonance width on the magnetic moment dispersion is predicted. To a large extent this particular aspect explains the high frequency response in some of our films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Viala, B., Minor, M.K. Barnard, J.A. J. Appl. Phys, 80 (1996) 3941 Google Scholar
2. Wang, H.Y. Yang, E.Y. Bai, H.L. Wu, P., Wang, Y., Gong, F.F. J. Phys.: Condens. Matter. 9 (1997) 8443 Google Scholar
3. Jin, S., Zhu, W., Tiefel, T.H. Korenivski, V., Dover, R.B. van, and Chen, L.H. J. Appl. Phys., 81 (1997) 4042 Google Scholar
4. Shimizu, O., Nakanishi, K., Yoshida, S., J. Appl. Phys. 70 (1991) 6244 Google Scholar
5. Hoffmann, H., Thin Solid Films, 58 (1979) 223 Google Scholar
6. Herzer, G., Scripta Metallurg. Materialia, 33 (1995) 1741 Google Scholar
7. Fuller, H.W. and Hale, M. E., J. Appl. Phys., 31, (1960) 238, ibid, 31 (1960) 1699Google Scholar
8. Wohlleben, D., J. Appl. Phys. 38 (1967) 3341 Google Scholar
9. Chezan, A.R., Craus, C.B. Chechenin, N.G. Niesen, L., and Boerma, D. O., Physica Status Solidi (a), 189 (2002) 833 Google Scholar
10. Chechenin, N.G. et al, to be publishedGoogle Scholar
11. Chechenin, N.G. Chezan, A.R. Craus, C.B. Vystavel, T., Boerma, D. O., Hosson, J.Th.M. De and Niesen, L., J. Magn. Magn. Mater., 239 (2002) p. 180 Google Scholar
12. Korenivski, V., Dover, R.B. van, Mankiewich, P.M. Ma, Z. X, Becker, A.J. Polakos, P.A. and Fratello, V.J. IEEE Trans. Magn. 32 (1996) 4905 Google Scholar
13. Spenato, D., Fessant, A., Gieraltowski, J., Gall, H. Le, and Tannous, C., J. Appl. Phys., 85 (1999) 6010 Google Scholar