Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T10:21:52.714Z Has data issue: false hasContentIssue false

On the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic

Published online by Cambridge University Press:  01 February 2011

A. Ziegler
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
J.M. McNaney
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
M. J. Hoffmann
Affiliation:
Institut für Keramik im Maschinenbau, Universität Karlsruhe, D-76131 Karlsruhe, Germany
R. O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
Get access

Abstract

The effects of grain-boundary chemistry on the mechanical properties of a high-purity silicon nitride ceramics were investigated, with specific emphasis on the role of oxygen. Variations in the grain-boundary oxygen content, through control of oxidizing heat treatments and sintering additives, was found to result in a transition in fracture mechanism from transgranular to intergranular fracture, with an associated increase in fracture toughness. This phenomenon is correlated to an oxygen-induced change in grain-boundary chemistry that appears to affect fracture by “weakening” the interface, facilitating debonding and crack advance along the boundaries, thereby enhancing the toughness by grain bridging. It is concluded that if the oxygen content in the thin grain-boundary films exceeds a lower limit, which is ∼0.87 equiv% oxygen content, then the interfacial structure and bonding characteristics favor intergranular debonding during crack propagation; otherwise, transgranular fracture ensues, with consequent low toughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Clarke, D.R., J. Am. Ceram. Soc., 70 15 (1987).Google Scholar
[2] Kleebe, H.J., Bruley, J., Rühle, M., J. Eur. Ceram. Soc., 14, 1 (1994).Google Scholar
[3] Gu, H., Pan, X., Cannon, R.M., Rühle, M., J. Am. Ceram. Soc., 81 3125 (1998).Google Scholar
[4] Kleebe, H.J., Cinibulk, M.K., Cannon, R.M., Rühle, M., J. Am. Ceram. Soc., 76 1969 (1993).Google Scholar
[5] Clarke, D.R., Shaw, T.M., Philipse, A.P., Horn, R.G., J. Am. Ceram. Soc., 76 1201 (1993).Google Scholar
[6] Kleebe, H.J., Hoffmann, M.J., Rühle, M., Z. Metallkd., 83 610 (1992).Google Scholar
[7] Tanaka, I., Kleebe, H.J., Cinibulk, M.K., Bruley, J., Clarke, D.R., Rühle, M., J. Am. Ceram. Soc., 77 911 (1994).Google Scholar
[8] Pan, X., Gu, H., van Weeren, R., Danforth, S.C., Cannon, R.M., Rühle, M., J. Am. Ceram. Soc., 79 2313 (1996).Google Scholar
[9] Wang, C.M., Pan, X., Hoffmann, M.J., Cannon, R.M., Rühle, M., J. Am. Ceram. Soc., 79 788 (1996).Google Scholar
[10] Cinibulk, M.K., Thomas, G., Johnson, S.M., J. Am. Ceram. Soc., 75 2037 (1992).Google Scholar
[11] Clarke, D.R., Zaluzec, N.J., Carpenter, R.W., J. Am. Ceram. Soc., 64 601 (1981).Google Scholar
[12] Becher, P.F., Sun, E.Y., Hsueh, C.H., Alexander, K.B., Hwang, S.L., Waters, S.B., Westmoreland, C.G., Acta Mat., 44 3881 (1996).Google Scholar
[13] Sun, E.Y., Alexander, K.B., Becher, P.F., Hwang, S.L., J. Am. Ceram. Soc., 79 2626 (1996).Google Scholar
[14] Cinibulk, M.K., Thomas, G., Johnson, S.M., J. Am. Ceram. Soc., 73 1606 (1990).Google Scholar
[15] Bonnell, D.A., Tien, T.Y., Rühle, M., J. Am. Ceram. Soc., 70 460 (1987).Google Scholar
[16] Bodur, C. T., Szabo, D. V., Kromp, K., J. Mat. Sci., 28 2089 (1993).Google Scholar
[17] Cinibulk, M.K., Kleebe, H.J., J. Mat. Sci., 28 5775 (1993).Google Scholar
[18] Lange, F.F., Davis, B.I., Graham, H.C., J. Am. Ceram. Soc., 66 C98 (1983).Google Scholar
[19] Lange, F.F, Davis, B.I., Metcalf, M.G., J. Mat. Sci., 18 1497 (1983).Google Scholar
[20] Klemm, H., Pezzotti, G., J. Am. Ceram. Soc., 77 553 (1994).Google Scholar
[21] Hoffmann, M.J., Geyer, A., Oberacker, R., J. Euro. Ceram. Soc., 19, 2359 (1999).Google Scholar
[22] Lawn, B.R., Fracture of Brittle Solids, 2nd ed., Cambridge Univ. Press (1993).Google Scholar
[23] Ziegler, A., Mc Naney, J.M., Hoffmann, M.J., Ritchie, R.O., J. Am. Ceram. Soc. in reviewGoogle Scholar
[24] Ritchie, R.O., Mater. Sci. Eng., A103 15 (1988).Google Scholar
[25] Becher, P.F., J. Am. Ceram. Soc., 74 255 (1991).Google Scholar