Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-20T09:00:01.742Z Has data issue: false hasContentIssue false

Ohmic Contacts To p+-GaAs and Al0.26Ga0.74As

Published online by Cambridge University Press:  25 February 2011

W. Y. Han
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
M. W. Cole
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
L. M. Casas
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
A. DeAnni
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
M. Wade
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
K. A. Jones
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
A. Lapore
Affiliation:
Army Research Laboratory, Fort Monmouth, New Jersey 07703-0500
Y. Lu
Affiliation:
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08855-0909
L. W. Yang
Affiliation:
Ford Microelectronics, Inc., 9965 Federal Drive, Colorado Spring, Colorado 80921 Currently with Martin Marietta Electronics Laboratory, Electronics Parkway, EP-3, Syracuse, NY 13221.
Get access

Abstract

Ohmic contacts, with metallization scheme of Pd/Ge/Ti/Pt, were formed on heavily carbon doped GaAs and AlxGa1-xAs. The lowest specific contact resistances were 4.7x10-7 and 8.9x 10-6 Ω-cm2 for the p+-GaAs and Al0.26Ga0.74As. The p+-GaAs and Al0.26Ga0.74As were doped with carbon to 5x1019 and 2x1019 cm-3 respectively. Interfacial reactions and elemental diffusion of the contacts were investigated via transmission electron microscopy and Auger electron spectrometry with depth profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Braslau, N., Staples, J. L., Solid-State Electron, 10), 38 ( 1967).CrossRefGoogle Scholar
2 Sands, T. and Wada, O., Jpn, J. Appl. Phys., 19L, 491 (1980).Google Scholar
3 Reemtsma, J. H. and Heime, K., Super Lattice and Microstructures, 4, 197 (1988).Google Scholar
4 Gopen, H. J. and Yu, A. Y. C., Solid-State Electron 14, 515 (1971).Google Scholar
5 Zheng, L. R., Lawrence, D. J., and Blanton, T. N., J. Mater. Res. 8, 1045 (1993).CrossRefGoogle Scholar
6 Han, W. H., Lu, Y., Lee, H. S., Cole, M. W., Casas, L. M., DeAnni, A., Wade, M., Jones, K. A., Yang, L. W., J. Appl. Phys. 74, 754 (1993).Google Scholar
7 Marshall, E. D., Yu, L.S., Lau, S. S., Appl. Phys. Lett., 54, 721 (1989).Google Scholar
8 Cole, M.W., Han, W.H., Casas, L.M., Eckart, D.W. and Jones, K.A., to be published in JVST (1994).Google Scholar
9 Yih-Cheng, Shih, Masanore, Murakami, Wilkie, E.L. and Callegari, A.C., J. Appl. Phys. 62, 582 (1987).Google Scholar
10 Liliental-Webber, Z., Washburn, J., Newman, N., Spicer, W.E. and Weber, E.R., Appl. Phys. Lett. 49, 1514 (1986).Google Scholar
11 Taeil, Kim, Ghung, D.D.L. and Mahajan, S., Mat Res. Soc. Symp. Proc., 77, 369 (1987).Google Scholar