Skip to main content Accessibility help
×
Home

Ohmic Contact Formation Mechanism of Pd-based Contact to p-GaN

  • Dae-Woo Kim (a1), Joon Cheol Bae (a1), Woo Jin Kim (a1), Hong Koo Baik (a1), Chong Cook Kim (a2), Jung Ho Je (a2) and Chang Hee Hong (a3)...

Abstract

We have investigated surface treatment effect on the interfacial reaction of Pd/p-GaN interface and also room temperature ohmic contact formation mechanism of Pd-based ohmic contact. In order to examine room temperature ohmic behavior, various metal contact systems were deposited and current-voltage measurements were carried out. In spite of large theoretical Schottky barrier height between Pd and p-GaN, Pd-based contact showed perfect ohmic characteristic even before annealing. According to the results of synchrotron X-ray radiation, the closed-packed atomic planes (111) of the Pd film were quite well ordered in surface normal direction as well as in the in-plane direction. The effective Schottky barrier height of Au/Pd/Mg/Pd/p-GaN was 0.47eV, which was estimated by Norde method. This discrepancy between theoretical barrier height and the measured one might be due to the epitaxial growth of Pd contact metal and so the room-temperature ohmic characteristic of Pd-based ohmic contact was related strongly to the in-plane epitaxial quality of metal on p-GaN.

Copyright

References

Hide All
1. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).
2. Nakamura, Shuji, J. Vac. Sci. Technol. A 13(3), 705 (1995).
3. Suzue, K., Mohammad, S. N., Fan, Z. F., Kim, W., Aktas, O., Botchkarev, A. E. and Morkoc, H., J. Appl. Phys. 80(8), 4467 (1996).
4. Wu, Y.-F., Jiang, W.-N., Keller, B. P., Kapolnek, D., Denbaars, S. P., Mishra, U. K. and Wilson, B., Solid-State Electronics 41(2) 165 (1997).
5. Kim, D.-W., Baik, H. K., Kim, C. Y., Kim, S. W., Hong, C. H., Mat. Res. Soc. Symp. Proc. 482, 1083 (1998).
6. Ho, J.-K., Jong, C.-S., Chiu, C. C., Huang, C.-N., Chen, C.-Y. and Shih, K.-K., Appl. Phys. Lett. 74(9), 1275 (1999).
7. Lee, J.-L., Weber, M., Kim, J. K., Lee, J. W., Park, Y. J., Kim, T. and Lynn, K., Appl. Phys. Lett. 74(16), 2289 (1999).
8. Jang, J.-S., Chang, I.-S., Kim, H.-K., Seong, T.-Y., Lee, S., and Park, S.-J., Appl. Phys. Lett. 74(1), 70 (1999).
9. Sheu, J. K., Su, Y. K., Chi, G. C., Chen, W. C., Huang, C. N., Hong, J. M., Yu, Y. C., Wang, C. W. and Lin, E. K., J. Appl. Phys. 83(6), 3172 (1998).
10. Norde, H., J. Appl. Phys., 50, 5052 (1979).
11. Liu, Q. Z., Lau, S. S., Perkins, N. R. and Kuech, T. F., Appl. Phys. Lett. 69(12), 1772 (1996).
12. Grandjean, N., Massies, J., Vennegues, P., Laugt, M., and Leroux, M., Appl. Phys. Lett. 70, 643 (1997).
13. Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).
14. Heine, V., Phys. Rev. A 138, 1689(1965).
15. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).
16. Hasegawa, H. and Ohno, H., J. Vac. Sci. Technol. B4(4), 1130 (1986).
17. Sato, T., Kaneshiro, C. and Hasegawa, H., Jpn. J. Appl. Phys. Part 1 38(2B), 1130 (1999).
18. Pretorius, R., Marais, T. K. and Theron, C. C., Material Science and Engineering, 10, 1 (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed