Skip to main content Accessibility help
×
×
Home

Numerical Simulation of Thermal Effects in Nonlinear Optical Materials

  • Gregory J. Kowalski (a1), Edward H. Wahl (a2) and Joseph F. Roach (a3)

Abstract

A numerical simulation of the nonlinear optical and thermal response of a material is described. The code is divided into preprocessor, simulation and postprocessing functions. The simulation function is a transient, three dimensional, finite difference algorithm which describes the thermal response and the optical phase change that occurs due to 3rd order nonlinearity and thermal effects. Irradiance changes due to linear and nonlinear absorption mechanisms are included in the code. In the postprocessing function a Gaussian beam decomposition technique is used to calculate the irradiance and transmitted power at a far field location and the temperature time response of the material. Examples of using the code to simulate Z-scan experiments are presented and compared to those reported in the literature. Results are presented that demonstrate that the code can be used as a tool to investigate using thermal transport mechanisms to modify the nonlinear optical response of the material. Limitations of the code are discussed.

Copyright

References

Hide All
1) Pepper, D. M. et al, “Phase Conjugation: Reversing Laser Aberrations”, Phontonics Spectra, PP 95–104, August, 1986
2) Sheik-Bahae, M. et al, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam”, IEEE Jour Quantum Electronics,pp 760769, vol.26, No.4, 1990
3) McDuff, R. et al, “Generalized Description of the Effects of a Thin Nonlinear Medium upon the Propagation of an Optical Beam”, Jour Nonlinear Photonics and Optical Physics, pp 265286, Vol.1, No. 2, 1992
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed