Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T23:01:33.087Z Has data issue: false hasContentIssue false

Nucleation Enhancement and Growth Of Diamond Films Using An Enclosed Combustion Flame

Published online by Cambridge University Press:  22 February 2011

A. Somashekhar
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919
J. T. Glass
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7919
J. T. Prater
Affiliation:
Army Research Office, Research Triangle Park, NC, 27709
Get access

Abstract

This research investigates the growth of diamond thin films using an enclosed oxyacetylene torch. Using statistical experimental design, we have systematically explored the parameter space to construct maps of nucleation density, film quality, and growth rate as functions of growth conditions. The deposition process is divided into nucleation enhancement and growth, and each step is optimized separately. In the study of the nucleation enhancement, we vary R = O2/C2H2, substrate-flame distance (z), and pretreatment time and determine the nucleation density and nucleation uniformity using electron microscopy. For the growth study, the variables are R, z, and substrate temperature, and we employ two different Raman scattering measurements to assess film quality. In one case, we determine a quality ratio β = diamond peak/(diamond peak + nondiamond peak); the second indicator is the luminescence determined from the baseline of the spectrum. In the growth study, the best film quality is comparable to the best films grown in an atmospheric flame in which R is cycled. We also find that the growth rate is a factor of 10 less than in the atmospheric flame.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Freitas, J. A. Jr., Butler, J. E., and Strom, U., J. Mater. Res. 5, 2502 (1990).Google Scholar
2. Freitas, J. A. Jr., Strom, U., Butler, J. E., and Snail, K. A., in MRS International Conf. Proceedings Series: New Diamond Science and Technology (Proceedings of the Second International Conf. on New Diamond Science and Technology), edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 1991), p. 723.Google Scholar
3. Freitas, J. A. Jr., Strom, U., Doverspike, K., Marks, C. M., and Snail, K. A., in MRS Symp. Proc.: Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Materials Research Society, Pittsburgh, PA, 1992), Vol. 242, p. 139.Google Scholar
4. Doverspike, K., Butler, J. E., and Freitas, J. A. Jr., in MRS Symp. Proc.: Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Materials Research Society, Pittsburgh, PA, 1992), Vol. 242, p. 37.Google Scholar
5. Murakawa, M., Takeuchi, S., and Hirose, Y., Surf. Coat. Technol. 43–44, 22 (1990).Google Scholar
6. Murakawa, M. and Takeuchi, S., Surf. Coat. Technol. 54155, 403 (1992).Google Scholar
7. Wang, D. Y., Song, Y. H., Wang, J. J., and Cheng, R. Y., Dia. Related Mater. 2, 304 (1993).Google Scholar
8. Morrison, P. W. Jr. and Haigis, J. R., J. Vac. Sci. Technol. A 11, 490 (1993).Google Scholar
9. Tzeng, Y., Cutshaw, C., Phillips, R., and Srivinyunon, T., Appl. Phys. Lett. 56, 134 (1990).Google Scholar
10. Ravi, K. V. and Koch, C. A., Appl. Phys. Lett. 57, 348 (1990).Google Scholar
11. Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).Google Scholar
12. Windheim, J. A. von and Glass, J. T., J. Mater. Res. 7, 2144 (1992).Google Scholar
13. McClure, M. T., Windheim, J. A. von, Glass, J. T., and Prater, J. T., in MRS Symp. Proc.: Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Materials Research Society, Pittsburgh, PA, 1992), Vol. 270, p. 323.Google Scholar
14. Golozar, M. A., McColl, I. R., Grant, D. M., and Wood, J. V., Dia. Related Mater. 1, 262 (1992).Google Scholar
15. Windheim, J. A. von, Sivazlian, F., McClure, M. T., and Glass, J. T., Dia. Related Mater. 2,438 (1993).Google Scholar
16. McClure, M. T., Windheim, J. A. von, Glass, J. T., and Prater, J., Dia. Related Mater. submitted (1993).Google Scholar
17. Sivazlian, F. R., Windheim, J. A. von, and Glass, J. T., in MRS Symp. Proc.: Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Materials Research Society, Pittsburgh, PA, 1992), Vol. 270, p. 329.Google Scholar
18. Hanssen, L. M., Snail, K. A., Carrington, W. A., Butler, J. E., Kellogg, S., and Oakes, D. B., Thin Solid Films 196, 271 (1991).Google Scholar
19. Snail, K. A., Oakes, D. B., Butler, J. E., and Hanssen, L. M., in MRS International Conf. Proceedings Series: New Diamond Science and Technology (Proc. of the 2nd International Conf. on New Diamond Science and Technology), edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 1991), p. 503.Google Scholar
20. Matsui, Y., Yabe, H., and Hirose, Y., Jpn. J. Appl. Phys. 29, 1552 (1990).Google Scholar