Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T23:02:44.843Z Has data issue: false hasContentIssue false

Nucleation and medium Range Order in Silicate Liquids: Inferences From NMR Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Jonathan R. Stebbins
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford CA 94305–2115
Sabyasachi Sen
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford CA 94305–2115
Get access

Abstract

NMR spectroscopy is beginning to provide quantitative information on short- and medium-range structure in silicate glasses and liquids, and on molecular-scale dynamics in the liquids. Data on coordination numbers, second and higher neighbor connectivities, and larger scale heterogeneities, as determined by NMR at ambient and high temperatures, are potentially very useful in models of nucleation and growth of immiscible liquid and crystalline phases. New techniques such as dynamic angle spinning (DAS), high temperature magic angle spinning (MAS) are especially promising. Detailed studies of paramagnetic nuclear spin relaxation can characterize compositional heterogeneity in glasses to distance scales of at least several nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beali, G. H., in Glass: Current Issues, edited by Wright, A. F. and Dupuy, J. (Martinus Nijhoff Publishers, Dordrecht, 1985), pp. 3148.Google Scholar
2. Ruckenstein, E. and Nowakowski, B., J. Coll. Interface Sci. 137, 583592 (1990).Google Scholar
3. Narasimhan, G. and Ruckenstein, E., J. Coll. Interface Sci. 128, 549565 (1989).Google Scholar
4. Bray, P. J., J. Non-Cryst. Solids 73, 1945 (1985).Google Scholar
5. Bray, P. J., et al, J. Non-Cryst. Solids 129, 240248 (1991).Google Scholar
6. Eckert, H., Ber. Bunsenges Phys. Chem. 94, 10621085 (1990).Google Scholar
7. Eckert, H., Prog. Nucl. Mag. Reson. 24, 159293 (1992).Google Scholar
8. Kirkpatrick, R. J., et al., in Structure and Bonding in Noncrystalline Solids, edited by Walrafen, G. E. and Revesz, A. G. (Plenum Press, New York, 1986), pp. 302327.Google Scholar
9. Massiot, D., Taulelle, F. and Coutures, J. P., Colloq. Phys. 51–C5, 425431 (1990).Google Scholar
10. Poe, B. T., et al, Eos, Trans. Am. Geophys. Union 72, 572 (1991).Google Scholar
11. Poe, B. T., McMillan, P. F., Angeli, C. A. and Sato, R. K., Chem. Geol. 96, 241266 (1992).Google Scholar
12. Stebbins, J. F. and Farnan, I., Science 255, 586589 (1992).Google Scholar
13. Fiske, P. S., Stebbins, J. F. and Farnan, I., Eos, Trans. Am. Geophys. Union 74, 349 (1993).Google Scholar
14. Stebbins, J. F., Farnan, I., Dando, N. and Tzeng, S. Y., J. Am. Ceram. Soc. 75, 30013006 (1992).Google Scholar
15. Kirkpatrick, R. J., Am. Mineral. 68, 6677 (1983).Google Scholar
16. Kubicki, J. D. and Lasaga, A. C., Geochim. Cosmochim. Acta 57, 38473854 (1993).Google Scholar
17. Liebau, F., Inorgan. Chim. Acta 89, 17 (1984).Google Scholar
18. Stebbins, J. F. and McMillan, P., J. Non-Cryst. Solids 160, 116125 (1993).Google Scholar
19. Stebbins, J. F. and McMillan, P., Am. Mineral. 74, 965968 (1989).Google Scholar
20. Xue, X., Stebbins, J. F., Kanzaki, M., McMillan, P. F. and Poe, B., Am. Mineral. 76, 826 (1991).Google Scholar
21. Stebbins, J. F., Nature 351, 638639 (1991).Google Scholar
22. Maekawa, H., Maekawa, T., Kawamura, K. and Yokokawa, T., J. Non-Cryst. Solids 127, 5364 (1991).Google Scholar
23. Dupree, R., Holland, D. and Mortuza, M. G., J. Non-Cryst. Solids 116, 148160 (1990).Google Scholar
24. Dupree, R., Holland, D. and Williams, D. S., J. Non-Cryst. Solids 81, 185200 (1986).Google Scholar
25. Stebbins, J. F., J. Non-Cryst. Solids 106, 359369 (1988).Google Scholar
26. Brandriss, M. E. and Stebbins, J. F., Geochim. Cosmochim. Acta 52, 26592670 (1988).Google Scholar
27. Stebbins, J. F. and Farnan, I., Science 245, 257262 (1989).Google Scholar
28. Farnan, I., et al, Nature 358, 3135 (1992).Google Scholar
29. Stebbins, J. F., Spearing, D. R. and Farnan, I., J. Non-Cryst. Solids 110, 112 (1989).Google Scholar
30. Farnan, I. and Stebbins, J. F., J. Am. Chem. Soc. 112, 3239. (1990).Google Scholar
31. Farnan, I. and Stebbins, J. F., J. Non-Cryst. Solids 124, 207215 (1990).Google Scholar
32. Stebbins, J. F., Farnan, I. and Xue, X., Chem. Geol. 96, 371386 (1992).Google Scholar
33. Farnan, I. and Stebbins, J. F., Eos, , Trans. Am. Geophys. Union 73, 600 (1992).Google Scholar
34. Dingwell, D. B., Chem. Geol. 82, 209216 (1990).Google Scholar
35. Dingwell, D. B. and Webb, S. L., Eur. J. Mineral. 2, 427449 (1990).Google Scholar
36. Devreux, F., Boilot, J. P., Chaput, F. and Sapoval, B., Phys. Rev. Lett. 65, 614617 (1990).Google Scholar
37. Sen, S. and Stebbins, J. F., Eos, Trans. Am. Geophys. Union, in press, (1993).Google Scholar
38. Sen, S. and Stebbins, J. F., presented at 1993 MRS Spring Meeting, Boston, MA, 1993 (unpublished)Google Scholar
39. Wright, A. F., in Glass: Current Issues, edited by Wright, A. F. and Dupuy, J. (Martinus Nijhoff Publishers, Dordrecht, 1985), pp. 2130.Google Scholar