Skip to main content Accessibility help
×
Home

A Novel Technology for Green(er) Manufacturing of CNTs via Recycling of Waste Plastics

  • Chuanwei Zhuo (a1), Brendan Hall (a1), Yiannis Levendis (a1) and Henning Richter (a2)

Abstract

Costly and often highly-flammable chemicals, such as hydrogen and carbon-containing gases, are largely used for carbon supply in current carbon nanotube (CNT) synthesis technologies. To mitigate related economic and safety concerns, we have developed a versatile CNT synthesis sequence, where low-cost and safe-to-handle-and-store waste solid polymers (plastics) are used for in situ generation of hydrogen and carbon-containing gases. Introduction of different waste plastics, such as polyethylene, polypropylene and polystyrene, into a multi-stage pyrolysis/ combustion/synthesis reactor allows for efficient CNT formation. This process is largely exothermic and scalable. It uses low-cost stainless steel screens to serve both as substrates as well as catalysts for CNT synthesis. This technique enables a solution for both waste plastic utilization and sustainable CNT production.

Copyright

References

Hide All
[1] Healy, ML, Dahlben, LJ, Isaacs, JA. Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol. 2008;12(3):376–93.
[2] Subramanian, PM. Plastics recycling and waste management in the US. Resour Conserv Recy. 2000;28(3–4):253–63.
[3] Zhuo, C., Hall, B., Richter, H., Levendis, Y. Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon. 2010;48(14):4024–34.
[4] Goncalves, CK, Tenorio, JAS, Levendis, YA, Carlson, JB Emissions from the premixed combustion of gasified polyethylene. Energ Fuel. 2007;22(1):372–81.
[5] Kiang, JKY, Uden, PC, Chien, JCW. Polymer reactions–Part VII: Thermal pyrolysis of polypropylene. Polym Degrad Stabil.2(2):113–27.
[6] Liu, Y, Qian, J, Wang, J. Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Process Technol. 2000;63(1):45–55.
[7] Hernadi, K, Fonseca, A, Nagy, JB, Siska, A, Kiricsi, I. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl Catal A-Gen. 2000;199(2):245–55.
[8] Vander Wal, RL, Hall, LJ, Berger, GM. Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B. 2002;106(51):13122–32.
[9] Benito, AM, Maniette, Y, Muñoz, E, Martínez, MT Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon. 1998;36(5–6):681–3.
[10] Charinpanitkul, T, Sano, N, Puengjinda, P, Klanwan, J, Akrapattangkul, N, Tanthapanichakoon, W. Naphthalene as an alternative carbon source for pyrolytic synthesis of carbon nanostructures. J Anal Appl Pyrol. 2009;86(2):386–90.
[11] Nasibulin, AG, Queipo, P, Shandakov, SD, Brown, DP, Jiang, H, Pikhitsa, PV, et al. . Studies on mechanism of single-walled carbon nanotube formation. J Nanosci Nanotechno. 2006;6(5):1233–46.
[12] Amama, PB, Pint, CL, McJilton, L, Kim, SM, Stach, EA, Murray, PT, et al. . Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets. Nano Lett. 2008;9(1):44–9.
[13] Zhang, G, Mann, D, Zhang, L, Javey, A, Li, Y, Yenilmez, E, et al. . Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. P Natl Acad Sci USA. 2005;102(45):16141–5.

Keywords

A Novel Technology for Green(er) Manufacturing of CNTs via Recycling of Waste Plastics

  • Chuanwei Zhuo (a1), Brendan Hall (a1), Yiannis Levendis (a1) and Henning Richter (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed