Skip to main content Accessibility help
×
Home

A Novel Spray Based Method for the Production of Semiconductor Nanocrystals

  • Lilac Amirav (a1) and Efrat Lifshitz (a1)

Abstract

We present a novel spray based method for the formation and production of semiconductor nanocrystals that provides an attractive alternative to the commonly used epitaxial and colloidal procedures. According to this spray-based method, mainly thermospray, solutions of semiconductor salts are first sprayed into monodispersed droplets, which subsequently become solid nanoparticles by solvent evaporation. A semiconductor nanoparticle is produced from a single spray droplet upon the full vaporization of the solvent. The average diameter and size distribution of the final nanocrystals are controlled and determined by the solute concentration of the sprayed solution and by the droplet size, hence by the spray production parameters. The spray-produced nanocrystals are collected on any selected solid support. Representative results, shown in this paper, reveal the formation of CdS nanocrystals in the size range of 3 to 6 nanometer and with a size distribution of as low as five percents. A further structural analysis of these nanocrystals showed that they were formed in the zinc blend phase with high degree of crystallinity.

Copyright

References

Hide All
1. Brus, L. E., J. Chem. Phys. 80, 4403, (1984).
2. Brus, L. E., J. Chem. Phys. 90, 2555, (1986).
3. Wang, Y. and Herron, N., J. Phys. Chem. 95, 525, (1991).
4. Norris, D. J., Efros, Al. L., Rosen, M., and Bawendi, M., Phys. Rev. B. 53, 16347, (1996).
5. Alivisatos, A. P., J. Phys. Chem. 100, 13226, (1996).
6. Efros, Al. L. and Rosen, M., Ann. Rev. Mater. Sci. 30, 475, (2000).
7. Stranski, I. N. and Krastanow, V. L., Akad. Wiss. Lit. Mainz Math. - Natur. K1. IIb, 146, 797, (1938).
8. Murray, C. B., Kagan, C. R. and Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545, (2000).
9. Murray, C.B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706, (1993).
10. Manna, L., Scher, E. C., and Alivisatos, A. P., J. of Cluster Sci. 13 (4), 521, (2002).
11. Peng, Z. A. and Peng, X., J. Am. Chem. Soc. 123, 1389, (2001).
12. Sakaki, H., J. Crystal Growth, 251, 9, (2003).
13. Willoughby, R. C. and Browner, R. F., Anal. Chem. 56, 2626, (1984).
14. Zhang, X., Chen, D., Marquardt, R., and Koropchak, J. A., Microchemical Journal, 66, 17, (2000).
15. Lenggoro, I. W., Okuyama, K.,; de la Mora, J. F., and Tohge, N.; et al. J Aerosol Sci. 31 (1), 121, (2000).
16. Clifford, R.H., Tan, H., Liu, H., Montaser, A., Zarrin, F., and Keady, P.B., Spectrochim. Acta Part B, 48, 1221, (1993).
17. Koropchank, J. A., and Veber, M., Crit. Rev. Anal. Chem. 23, 113, (1992).
18. Conver, T. S., Yang, J., and Koropchak, J. A., Spectrochimica Acta Part B, 52, 1087, (1997).
19. Mora, J., Canals, A., Hernandis, V., Spectrochim. Acta Part B, 51, 1535, (1996).
20. Vestal, M. L. and Fergusson, G. J., Anal. Chem. 57, 2373, (1985).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed