Skip to main content Accessibility help

Novel Polar-fluoropolymer Blends with Tailored Nanostructures for High Energy Density and Low Loss Capacitor Applications

  • Shan Wu (a1), Minren Lin (a1), David S-G. Lu (a1), Lei Zhu (a2) and Q. M. Zhang (a1)...


Dielectric polymers with high energy density with low loss at high electric fields are highly desired for many energy storage and regulation applications. A polar-fluoropolymer blend consisting of a high energy density polar-fluoropolymer of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) with a low dielectric loss polymer of poly(ethylene-chlorotrifluoroethylene) (ECTFE) was developed and investigated. We show that the two polymers are partially miscible which leads to blends with high energy density and low loss. Moreover, by introducing crosslinking to further tailor the nano-structures of the blends a markedly reduction of losses in the blend films at high field can be achieved. The crosslinked blend films show a dielectric constant of 7 with a dielectric loss of 1% at low field. Furthermore, the blends maintain a high energy density and low loss (∼3%) at high electric fields (> 250 MV/m).



Hide All
1. Sarjeant, W. J., Zirnheld, J., and MacDougall, F. W., IEEE Trans. Plasma Sci. 26, 1368 (1998).
2. Cao, Y., Irwin, P. C., and Younsi, K., IEEE Trans. Diel. El. Ins. 11, 797 (2004).
3. Rabuffi, M. and Picci, G., IEEE Trans. Plasma Sci. 30, 1939 (2002).
4. Chu, B. J., Zhou, X., Ren, K. L., Neese, B., Lin, M. R., Wang, Q., Bauer, F., and Zhang, Q. M., Science 313, 1887 (2006).
5. Zhou, X., Chu, B. J., Neese, B., Lin, M. R., and Zhang, Q. M., IEEE Trans. Diel. El. Ins. 14 (5), 1133 (2007).
6. Zhou, X., Zhao, X. H., Suo, Z. G., Zou, C., Runt, J., Liu, S., Zhang, S. H., and Zhang, Q. M., Appl. Phys. Lett. 94, 162901 (2009).
7. Nalwa, H., Ferroelectric Polymers: Chemistry, Physics, and Applications. (Marcel Dekker, Inc., New York, 1995), p.895.
8. Zhang, S. H., Zhang, N. Y., Huang, C., Ren, K. L., and Zhang, Q. M., Adv. Mater. 17, 1897 (2005).
9. Pu, H. T., Tang, X. Z., and Xu, X. M., Polym. Int. 45, 169 (1998).
10. Sinha, J. K., J. Sci. Instrum. 42, 696 (1965).
11. Bai, Y., Cheng, Z. Y., Bharti, V., Xu, H. S., and Zhang, Q. M., Appl. Phys. Lett. 76 (25), 3804 (2000).
12. Yamada, T., Ueda, T., and Kitayama, T., J. Appl. Phys. 53 (6), 4328 (1982).
13. Chen, Q., Wang, Y., Zhou, X., Zhang, Q. M., and Zhang, S. H., Appl. Phys. Lett. 92, 142909 (2008).
14. Zhang, Q. M., Pan, W. Y., Jang, S. J., and Cross, L. E., J. Appl. Phys. 64 (11), 6445 (1988).
15. Zhou, X., Chu, B. J. and Zhang, Q. M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 1540 (2006).
16. Mueller, V. and Zhang, Q. M., Appl. Phys. Lett. 72 (21), 2692 (1998).
17. Damjanovic, D. and Demartin, M., J. Phys. D. Appl. Phys. 29 (7), 2057 (1996).
18. Kepler, R. G. and Anderson, R. A., Mol. Cryst. Liq. Cryst. 106 (3-4), 345 (1984).
19. Kepler, R. G., Anderson, R. A., and Lagasse, R. R., Phys. Rev. Lett. 48 (18), 1274 (1982).
20. Li, Z. M., Wang, Y. H., and Cheng, Z. Y., Appl. Phys. Lett. 88 (6), 062904 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed