Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T21:40:34.641Z Has data issue: false hasContentIssue false

Novel Organically Templated Mixed-Valent Titanium Phosphates with Open Framework Structures: Hydrothermal Synthesis and Characterization

Published online by Cambridge University Press:  16 February 2011

S. Ekambaram
Affiliation:
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
Slavi C. Sevov
Affiliation:
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
Get access

Abstract

We have hydrothermally synthesized the first reduced titanium phosphates with open-framework structures. The synthetic approach is quite unusual since elemental titanium is used. The full structural, thermal, magnetic, and spectroscopic characterization of a 1,3-diaminopropanetemplated compound, TiIIITiIV(PO4)(HPO4)2(H2O)2·(NH2CH2CH2CH2NH2)0.5, is presented. The frame of the compound is of the octahedral/tetrahedral type with octahedrally coordinated TiIII and TiIV atoms. The template of 1,3-diaminopropane occupies channels with dimensions that are comparable to those of many zeolites. Magnetic measurements are consistent with one d-electron per formula unit. TGA/DTA and IR data will be reported as well. This compound is most likely the first member of a larger class of reduced titanium phosphates. Some preliminary data suggests that similar reduced titanium phosphates with different templates and structures exist as well. All compounds are blue-purple due to Ti(III).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arends, I.W. C., Sheldon, R. A., Wallau, M., Schuchardt, U., Angew. Chem., Int. Ed. Engl., 1997, 36, 1144, and References therein.Google Scholar
2. a) Notari, B., Perego, G., Tarramasso, M., U. S. Patent 4410501, 1983;Google Scholar
b) Blasco, T., Camblore, M. A., Corma, A., Perez-Pariente, J., J. Am. Chem. Soc., 1993, 115, 11806.Google Scholar
3. a) Sasidharan, M., Raju, S. V. N., Srinivasan, K. V., Paul, V., Kumar, R., J. Chem. Soc., Chem. Commun. 1996, 129;Google Scholar
b) Kumar, R., Pais, G. C. G., Pandey, B., Kumar, P., J. Chem. Soc. Chem. Comm., 1995, 1315;Google Scholar
c) Clerici, M. G., Ingallina, P., J. Catal., 1993, 140, 71;Google Scholar
d) Kumar, P., Hegde, V. R., Pandey, B., Ravindranathan, T., J. Chem. Soc., Chem. Commun., 1993, 1553;Google Scholar
e) Reddy, J. S., Khire, U. R., Ratnasamy, P., Mitra, R. B., J. Chem. Soc., Chem. Commun., 1992, 1234.Google Scholar
4. a) Kuznicki, S. M., U. S. Patent 4853202, 1989;Google Scholar
b) Kuznicki, S. M., U. S. Patent 4938989, 1990;Google Scholar
c) Chapman, D. M., Roe, A. L., Zeolites 1990, 10, 730;Google Scholar
d) Chapman, D. M., U. S. Patent 5015453, 1991;Google Scholar
e) Kuznicki, S. M., Thrush, K. A., Allen, F. M., Levine, S. M., Hamil, M. M., Hayhurst, D. T., Mansour, M. in Molecular Sieves, Vol. 1 (Eds.: Occelli, M. L., Robson, H.), Van Nostrand Reinhold, New York, 1992, p. 427;Google Scholar
f) Poojari, D. M., Cahill, R. A., Clearfield, A., Chem. Mater. 1994, 6, 2364;Google Scholar
g) Anderson, M. W., Terasaki, O., Ohsuna, T., Philippou, A., MacKay, S. P., Ferreira, A., Rocha, J., Lidin, S., Nature 1994, 367, 347;Google Scholar
h) Sankar, G., Bell, R. G., Thomas, J. M., Anderson, M. W., Wright, P. A., Rocha, J., J. Phys. Chem. 1996, 100, 449.Google Scholar
5. a) Bianchi, C. L., Ragaini, V., J. Catal. 1997, 168, 70;Google Scholar
b) Das, T. K., Chandwadkar, A. J., Sivasanker, S., Catal. Lett. 1997, 44, 113;Google Scholar
c) Das, T. K., Chandwadkar, A. J., Sivasanker, S., J. Mol. Catal. A, 1996, 107, 199;Google Scholar
d) Robert, R., Rajamohanan, P. R., Ratnasamy, P., J. Catal. 1995, 155, 345 Google Scholar
6. a) Haushalter, R., Mundi, L., Chem. Mater. 1992, 4, 31, and Referencestherein;Google Scholar
b) Zima, V., Lii, K. -H., Nguyen, N., Ducouret, A., Chem. Mater. 1998, 10, 1914;Google Scholar
c) Lii, K. H., Huang, Y. F., J. Chem. Soc., Dalton Trans. 1997, 2221;Google Scholar
d) Lii, K. H., Huang, Y. F., Chem. Commun. 1997, 839;Google Scholar
e) Korzenski, M. B., Schimek, G. L., Kolis, J. W., Eur. J. Solid St. Inorg. Chem. 1998, 35, 143;Google Scholar
f) Bircsak, Z., Harrison, W. T. A., Inorg. Chem., 1998, 37, 3204.Google Scholar
7. Sevov, S. C., Angew. Chem. 1996, 108, 2814; Angew. Chem. Int. Ed. Engl. 1996, 35, 2630. The isostructural Ni(II)-, Fe(II)-, Mn(II)-, and Mg-analoges were made later as well.Google Scholar
8. Brese, N. E., O'Keeffe, M., Acta. Cryst. 1991, B47, 192.Google Scholar
9. Aquino, M. A. S., Clegg, W., Liu, Q.-T., Sykes, A. G., Acta Cryst. C 1995, 51, 560.Google Scholar
10. Sygusch, J., Acta Cryst. B 1974, 30, 662.Google Scholar
11. McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., Wong-Ng, W., Zhang, Y., Hubbard, C. R., Powder Diffr. 1987, 2, 41.Google Scholar