Skip to main content Accessibility help

A Novel In-Situ Nanoindentation Characterization of Phase Transforming Materials

  • A. Alipour Skandani (a1), R. Ctvrtlik (a2) and M. Al-Haik (a3)


Materials with different allotropes can undergo one or more phase transformations based on the changes in the thermodynamic states. Each phase is stable in a certain temperature/pressure range and can possess different physical and mechanical properties compared to the other phases. The majority of material characterizations have been carried out for materials under equilibrium conditions where the material is stabilized in a certain phase and a lesser portion is devoted for onset of transformation. Alternatively, in situ measurements can be utilized to characterize materials while undergoing phase transformation. However, most of the in situ methods are aimed at measuring the physical properties such as dielectric constant, thermal/electrical conductivity and optical properties. Changes in material dimensions associated with phase transformation, makes direct measurement of the mechanical properties very challenging if not impossible. In this study a novel non-isothermal nanoindentation technique is introduced to directly measure the mechanical properties such as stiffness and creep compliance of a material at the phase transformation point. Single crystal ferroelectric triglycine sulfate (TGS) was synthetized and tested with this method using a temperature controlled nanoindentation instrument. The results reveal that the material, at the transformation point, exhibits structural instabilities such as negative stiffness and negative creep compliance which is in agreement with the findings of published works on the composites with ferroelectric inclusions.



Hide All
1. Prasad, J. and Diaz, A. R., J. Mech. Design. 128, 1298 (2006).
2. Mizuno, T., Toumiya, T. and Takasaki, M., Int. J. Jap. Soc. Mech. Eng. 46(3), 807812 (2003).
3. Lakes, R. S., Lee, T., Bersie, A. and Wang, Y. C., Nature. 410, 565567 (2001).
4. Kashdan, L., Seepersad, C., Haberman, M. and Wilson, P. S., Rapid Prototyping J. 18(3), 194200 (2012).
5. Sarlis, A. A., Pasala, S. M. A. D. T. R., Constantinou, M. A. M. C., Reinhorn, F. A. A. M., Nagarajaiah, M. A. S. and Taylor, D. P., J. Struct. Eng. 139, 11241133 (2013).
6. Diamantini, M. C. and Kleinert, H., Physical review letters 82(2), 267270 (1999).
7. Jaglinski, T., Frascone, P., Moore, B., Stone, D. S. and Lakes, R. S., Philosophical Magazine 2011, 42854303 (2006).
8. Skandani, A. A., Boroujeni, A. Y. and Al-Haik, M., presented at the ASME 2013 Int. Mech. Eng. Cong. and Exp., San Diego, (2013).
9. Skandani, A. A., Boroujeni, A. Y., Kalhor, R., Case, S. W. and Al-Haik, M., Polymer Composites (2014).
10. Skandani, A. A., Masghouni, N. and Al-Haik, M., Superior Damping of Hybrid Carbon Fiber Composites Grafted by ZnO Nanorods. (Springer, New York, 2014).
11. Skandani, A. A., Masghouni, N., Case, S., Leo, D. and Al-Haik, M., Applied Physics Letters 101(7), 073111 (2012).
12. Kailer, A., Gogotsi, Y. G. and Nickel, K. G., Journal of Applied Physics 81(7), 30573063 (1997).
13. Kulikovsky, V., Vorlíček, V., Boháč, P., Stranyánek, M., Čtvrtlík, R. and Kurdyumov, A., Thin Solid Films 516(16), 53685375 (2008).
14. Suresh, S., Nat Mater 5(4), 253254 (2006).
15. Shen, L., Cheong, W. C. D., Foo, Y. L. and Chen, Z., Mater. Sci. Eng. A, 532(0), 505510 (2012).
16. Everitt, N. M., Davies, M. I. and Smith, J. F..
17. Ctvrtlik, R., Al-Haik, M. S. and Kulikovsky, V., Journal of Materials Science (2014).
18. Cizman, A., Antropova, T., Anfimova, I., Drozdova, I., Rysiakiewicz-Pasek, E., Radojewska, E. B. and Poprawski, R., Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites. (2013).
19. Hoshino, S., Mitsui, T., Jona, F. and Pepinsky, R., Physical Review 107(5), 12551258 (1957).
20. Lal, R. B. and Batra, A. K., Ferroelectrics 142(1), 5182 (1993).
21. Iwao, S. and Sadao, H., Japanese Journal of Applied Physics 1(5), 249 (1962).
22. Deguchi, K. and Nakamura, E., Physics Letters A 60(4), 351352 (1977).
23. Matthias, B. T., Miller, C. E. and Remeika, J. P., physical review 104, 849850 (1956).
24. Andriyevsky, B., Esser, N., Patryn, A., Cobet, C., Ciepluch-Trojanek, W. and Romanyukc, M., Physica B 373, 328333 (2006).
25. Deguchi, K. and Nakamura, E., Phys. Let. 60A, 351352 (1977).
26. Alexandru, H. V. and Berbecaru, C., Cryst. Rex Technol. 30(3), 307315 (1995).
27. Skandani, A. A., Ctvrtlik, R. and Al-Haik, M., Appl. Phys. Let. 105(8), - (2014).
28. Oliver, W. C. and Pharr, G. M., J. Mat. Research 7, 15641583 (1992).
29. Doerner, M. F. and Nix, W. D., J. Mat. Research 1(04), 601609 (1986).


A Novel In-Situ Nanoindentation Characterization of Phase Transforming Materials

  • A. Alipour Skandani (a1), R. Ctvrtlik (a2) and M. Al-Haik (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed