Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T11:55:06.371Z Has data issue: false hasContentIssue false

Novel in situ and real-time optical probes to detect (surface) defect states of a-Si:H

Published online by Cambridge University Press:  01 February 2011

W.M.M. Kessels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
I.M.P. Aarts
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.J.H. Gielis
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.P.M. Hoefnagels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

This paper describes two novel optical diagnostics that were recently introduced to the field of Si-based thin films, in particular for probing defect states present in the bulk and at the surface of a-Si:H films. It is expected that these diagnostics, when applied in situ or real time during film growth, can provide new insights into the a-Si:H film properties as well as into the fundamental surface processes during growth. The first method is cavity ringdown spectroscopy (CRDS). From ex situ measurements on a-Si:H thin films, it is shown that this method is very powerful for measuring absolute defect-related absorptions at subgap energies without the need for a calibration procedure, even for films as thin as 4 nm. It is also shown that the method can be used for measuring rare-earth dopants – here Er3+ in silicon-rich oxide – to the extent that issues about absorption cross-sections can be resolved by using thin samples instead of waveguides. Furthermore, the in situ application of the method for thin films is discussed by presenting the evanescent-wave cavity ringdown (EW-CRDS) technique. The second method is spectroscopic second harmonic generation (SHG). It has been found that this non-linear optical technique yields a photon energy dependent signal for as-deposited a-Si:H films and that this signal has a contribution from a-Si:H surface states. From a comparison with c-Si surface science studies, the possible origin of the signal from surface Si dangling bonds and strained Si-Si bonds is discussed. The application of SHG during real-time film growth is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Perrin, J., Shiratani, M., Kae, P.-Nune, Videlot, H., Jolly, J., and Guillon, J., J. Vac. Sci. Technol. A 16, 278 (1998).10.1116/1.580983Google Scholar
[2] Hoefnagels, J. P. M., Barrell, Y., Kessels, W. M. M., and Sanden, M. C. M. van de, J. Appl. Phys. 96, 4094 (2004).10.1063/1.1793359Google Scholar
[3] Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Chen, C., Koh, J., Koval, R. J., Lee, Y., Pearce, J. M., and Wronski, C. R., Sol. En. Mater. Sol. Cells 78, 143 (2003).10.1016/S0927-0248(02)00436-1Google Scholar
[4] Fujiwara, H., Kondo, M., and Matsuda, A., J. Appl. Phys. 91, 4181 (2002)10.1063/1.1457535Google Scholar
[5] Levi, D. H., Nelson, B. P., and Reedy, R., Thin Solid Films 430, 20 (2003).10.1016/S0040-6090(03)00123-8Google Scholar
[6] Sperling, B.A. and Abelson, J.R., Appl. Phys. Lett. 85, 3456 (2004).10.1063/1.1777414Google Scholar
[7] Smets, A.H.M., Kessels, W.M.M., and Sanden, M.C.M. van de, Appl. Phys. Lett. 82, 865 (2003).10.1063/1.1543237Google Scholar
[8] Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., J. Non-Cryst. Solids 137-138, 765 (1991).10.1016/S0022-3093(05)80233-9Google Scholar
[9] Keudell, A. Von and Abelson, J.R., Phys. Rev. B 59, 5791 (1999).10.1103/PhysRevB.59.5791Google Scholar
[10] D.C. Marra, Kessels, W.M.M., Sanden, M.C.M. van de, Kashefizadeh, K., and Aydil, E.S., Surf. Sci. 530, 1 (2003).Google Scholar
[11] Kessels, W.M.M., Hoefnagels, J.P.M., Oever, P.J. van den, Barrell, Y., and Sanden, M.C.M. van de, Surf. Sci. Lett. 547, 865 (2003).10.1016/j.susc.2003.10.030Google Scholar
[12] Valipa, M.S., Aydil, E.S., and Maroudas, D., Surf. Sci. Lett. 572, L339 (2004).10.1016/j.susc.2004.08.029Google Scholar
[13] Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., J. Non-Crys. Solids 227-230, 83 (1998).10.1016/S0022-3093(98)00024-6Google Scholar
[14] O'Keefe, A. and Deacon, D.A.G., Rev. Sci. Instrum. 59, 2544 (1988); G. Berden, R. Peeters, and G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)10.1063/1.1139895Google Scholar
[15] Kessels, W.M.M., Hoefnagels, J.P.M., Boogaarts, M.G.H., Schram, D.C., and Sanden, M.C.M. van de, J. Appl. Phys. 89, 2065 (2001); W.M.M. Kessels, F.J.H. van Assche, J. Hong, D.C. Schram, and M.C.M. van de Sanden, J. Vac. Sci. Technol. A 22, 96 (2004); and references therein.10.1063/1.1344911Google Scholar
[16] Engeln, R., Helden, G. Von, Roij, A.J.A. van, and Meijer, G., Chem. Phys. Lett. 110, 2732 (1999).Google Scholar
[17] Marcus, G.A. and Schwettman, H.A., Appl. Opt. 41, 5167 (2002).10.1364/AO.41.005167Google Scholar
[18] Logunov, S.L., Appl. Opt. 40, 1570 (2001).10.1364/AO.40.001570Google Scholar
[19] Aarts, I.M.P., Hoex, B., Smets, A.H.M., Engeln, R., Kessels, W.M.M., and Sanden, M.C.M. van de, Appl. Phys. Lett. 84, 3079 (2004).10.1063/1.1713047Google Scholar
[20] Aarts, I.M.P., Hoex, B., Smets, A.H.M., Engeln, R., Sanden, M.C.M. van de, and Kessels, W.M.M., to be published.Google Scholar
[21] Asano, A. and Stutzmann, M., J. Appl. Phys. 70, 5025 (1991).10.1063/1.349007Google Scholar
[22] Aarts, I.M.P., Sanden, M.C.M. van de, and Kessels, W.M.M., J. Non-Cryst. Solids 338-340, 408 (2004).10.1016/j.jnoncrysol.2004.03.100Google Scholar
[23] Lombardo, S., Campisano, S. U., Hoven, G. N. van den, Cacciato, A., and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
[24] Kik, P.G. and Polman, A., J. Appl. Phys. 91, 534 (2002).10.1063/1.1418417Google Scholar
[25] Mertens, H., Polman, A., Aarts, I.M.P., Kessels, W.M.M., and Sanden, M.C.M. van de, accepted for publication in Appl. Phys. Lett. (2005).Google Scholar
[26] Pipino, A.C.R., Appl. Opt. 39, 1449 (2000).10.1364/AO.39.001449Google Scholar
[27] Pipino, A.C.R., Hoefnagels, J.P.M., and Watanabe, N., J. Chem. Phys. 120, 2879 (2004).10.1063/1.1637338Google Scholar
[28] Aarts, I.M.P., Pipino, A.C.R., Hoefnagels, J.P.M., Kessels, W.M.M., and Sanden, M.C.M. van de, submitted for publication.Google Scholar
[29] Shen, Y.R., Nature 337, 519 (1989).10.1038/337519a0Google Scholar
[30] Reider, G.A. and Heinz, T.F., Photonic probes of surfaces, ed. by Halevi, P. (Elsevier, Amsterdam, 1995)Google Scholar
[31] Höfer, U., Appl. Phys. A: Mater. Sci. Process. A 63, 533 (1995).Google Scholar
[32] Pedersen, K. and Morgen, P., Phys. Rev. B 52, R2277 (1995).10.1103/PhysRevB.52.R2277Google Scholar
[33] Suzuki, T., Phys. Rev. B. 61, R5117 (2000).10.1103/PhysRevB.61.R5117Google Scholar
[34] Daum, W., Krause, H.-J., Reichel, U., and Ibach, H., Phys. Rev. Lett. 71, 1234 (1993).10.1103/PhysRevLett.71.1234Google Scholar
[35] Hoefnagels, J.P.M., Langereis, E., Sanden, M.C.M. van de, and Kessels, W.M.M., Mater. Res. Soc. Proc. 808, A9.24, (2004).10.1557/PROC-808-A9.24Google Scholar
[36] Kessels, W.M.M., Gielis, J.J.H., Aarts, I.M.P., Leewis, C.M., and Sanden, M.C.M. van de, Appl. Phys. Lett. 85, 4049 (2004).10.1063/1.1812836Google Scholar
[37] Aarts, I.M.P., Gielis, J.J.H., Sanden, M.C.M. van de, and Kessels, W.M.M., submitted for publication.Google Scholar