Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T02:13:27.457Z Has data issue: false hasContentIssue false

Novel Electronics Enabled by Rare Earth Arsenides Buried in III-V Semiconductors

Published online by Cambridge University Press:  21 February 2011

S. James Allen
Affiliation:
Physics Department, UCSB, Santa Barbara, CA 93106
Dan Brehmer
Affiliation:
Physics Department, UCSB, Santa Barbara, CA 93106
C.J. PalmstrØm
Affiliation:
Bellcore, 331 Newman Springs Rd., Redbank, NJ, 07701
Get access

Abstract

Heterostructures consisting of III-V semiconductors and epitaxial layers of the rare earth monoarsenides can be grown by molecular beam epitaxy. By alloying ErAs with ScAs, lattice match can be achieved with (Al,Ga)As. Using magneto-transport measurements, we show that these layers are semi-metallic with equal electron and hole concentrations, 3.0 ×1020 cm−3. Shubnikov-de Haas oscillations are used to confirm the predicted Fermi surface geometry and measure the electron effective mass and the coupling to the 4f spin on the Er3+ ion. Remarkably, the material shows no transition from semimetal to semiconductor as the film thickness is reduced to three monolayers. Below three monolayers the films are not uniform and are believed to consist of islands three monolayers high.

This system provides a unique opportunity to explore novel electronics based on controlled transport through semimetal/semiconductor heterostructures. Lateral transport through semimetal islands immersed in a δ-doped layer may provide a fast non-linear material for THz electronics. Vertical transport through thin epitaxial layers may enable resonant tunneling hot electron transistors with a semi-metal base. Preliminary experiments on transistor like test structures measure some transfer through a 10 monolayer thick semimetal base. They also identify overgrowth of the III-V semiconductor on the semimetal layer as the key materials issue.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mead, C.A., Proc. IRE 48, 359 (1960).Google Scholar
2. Sze, S.M. and Gummel, H.K., Solid State Electron. 9, 751 (1966).Google Scholar
3. Seabaugh, A.C., Luscombe, J.H. and Randall, J.N., to be published Future Electron Devices Journal.Google Scholar
4. Capasso, F., Sen, S., and Beltram, F., “Quantum-Effect Devices” in High Speed Semiconductor Devices, edited by Sze, S.M. (John Wiley & Sons, New York, 1990), p. 465.Google Scholar
5. Seabaugh, A.C. and Reed, M., “Resonant Tunneling Transistors”, to be published in Heterostructure and Ouantum Devices, edited by Einspruch, N.G. and Frensley, W.R..Google Scholar
6. Palmstrom, C.J., Mounier, S., Finstad, T.G., Miceli, P.F., Appl. Phys. Lett. 56, 382 (1990).Google Scholar
7. Sands, T., Palmstrom, C.J., Harbison, J.P., Keramidas, V.G., Tabatabaie, N., Cheeks, T.L., Ramesh, R. and Silberberg, Y., Mat. Sci. Rep. 5, 99 (1990).Google Scholar
8. Allen, S.J. Jr., DeRosa, F., Palmstrom, C.J., and Zrenner, A., Phys. Rev. B43, 9599 (1991).Google Scholar
9. Hasegawa, A. and Yanase, A., J. Phys. Soc. Jpn. 42, 492 (1977).Google Scholar
10. Bogaerts, R., Bockstal, L. Van, Herlach, F., Peeters, F.M., DeRosa, F., Palmstrom, C.J. and Allen, S.J. Jr., Physica B177 425 (1992).Google Scholar
11. Allen, S.J. Jr., Tabatabaie, N., Pamstrom, C.J., Hull, G.W., Sands, T., DeRosa, F., Gilchrist, H.L and Garrison, K.C., Phys. Rev. Lett. 62, 2309 (1989).Google Scholar
12. Xia, J.-B., Ren, S.-F. and Chang, Y.C., Phys. Rev. B43, 1692 (1991).Google Scholar
13. Hacker, J.B., Weikle, R.M. II, Kim, M., DeLisio, M.P. and Rutledge, D.B., IEEE Trans. Microwave Theory Tech., 39, 557 (1992).Google Scholar
14. Weikle, R.M. II, Kim, M., Hacker, J.B., DeLisio, M.P., Popovic, Z.B. and Rutledge, D.B., Proc. IEEE, 80, 1800 (1992).Google Scholar
14. Sze, S.M., Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981, p.537.Google Scholar
15. Melloch, M.R., Otsuka, N., Mahalingam, K., Chang, C.L., Kirchener, P.D., Woodall, J.M. and Warren, A.C., Appl. Phys. Lett. 61, 177 (1992).Google Scholar
17. Quinn, J.J., Phys. Rev. 126, 1453 (1962).Google Scholar