Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-11T03:21:49.819Z Has data issue: false hasContentIssue false

Novel Dynamic Scanning Microscope Probe and its Application to Local Electrical Measurement in an Ion Sensitive Field Effect Transistor

Published online by Cambridge University Press:  01 February 2011

T. Akiyama
Affiliation:
Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
K. Suter
Affiliation:
Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
N. F. de Rooij
Affiliation:
Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
U. Staufer
Affiliation:
Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
Get access

Abstract

A unique self-actuating and self-sensing probe, which is based on a quartz tuning fork and a microfabricated cantilever, is presented for dynamic scanning probe microscopy. The probing tip can be electrically connected to an external source or measure unit. The sensitivity of the drain-source current of an ion sensitive field effect transistor (ISFET) was investigated as a function of the probe position in order to assess the potential of the probe in device testing, where its non-optical read-out mechanism may proof to be a particular advantage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G., Quate, C. F., and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
2. Wolter, O., Bayer, Th., and Greschner, J., J. Vac. Sci. Technol. B 9, 1353 (1991).Google Scholar
3. Albrecht, T. R., Akamine, S., Carver, T. E., and Quate, C. F., J. Vac. Sci. Technol. A 8, 3386 (1990).Google Scholar
4. Tortonese, M., Barrett, R. C., and Quate, C. F., Appl. Phys. Lett. 62, 834 (1993).Google Scholar
5. Edwards, H., Taylor, L., Duncan, W., and Melmed, A. J., J. Appl. Phys. 82, 980 (1997).Google Scholar
6. Giessibl, F.J., Appl. Phys. Lett. 73, 3956 (1998).Google Scholar
7. Todorovic, M. and Schultz, S., J. Appl. Phys. 83, 6229 (1998).Google Scholar
8. Rychen, J., Ihn, T., Studerus, P., Herrmann, A., and Ensslin, K., Rev. Sci. Instrum. 70, 2765 (1999).Google Scholar
9. Rensen, W. H. J., van Hulst, N. F., Ruiter, A. G. T., and West, P. E., Appl. Phys. Lett. 75, 1640 (1999).Google Scholar
10. Göttlich, H., Stark, R. W., Pedarnig, J. D., and Heckl, W. M., Rev. Sci. Instrum. 71, 3104 (2000).Google Scholar
11. Akiyama, T., Staufer, U. and de Rooij, N. F., Rev. Sci. Instrum. 74, 112 (2003)Google Scholar
12. Akiyama, T., Staufer, U. and de Rooij, N. F., Appl. Surf. Sci. 210, 18 (2003).Google Scholar
13. Suter, K., Akiyama, T., de Rooij, N. F., Baumgartner, A., Ihn, T., Ensslin, K., and Staufer, U., AIP Conf. Proc. 696, 227 (2003).Google Scholar
14. Albrecht, T. R., Grütter, P., Horne, D., and Rugar, D., J. Appl. Phys. 69, 668 (1991).Google Scholar
15. van den Vlekkert, H.H., de Rooij, N.F., Analusis 16, 110 (1988).Google Scholar
16. Eriksson, M. A., Beck, R. G., Topinka, M., Katine, J. A., Westervelt, R. M., Campman, K. L., and Gossard, A. C., Appl. Phys. Lett. 69, 671 (1996).Google Scholar