Skip to main content Accessibility help

A novel 3C-SiC on Si power Schottky diode design and modelling

  • Fan Li (a1), Yogesh K. Sharma (a1), Craig A. Fisher (a1), Michael R. Jennings (a1) and Philip A. Mawby (a1)...


Although 3C-SiC has a narrower bandgap than 4H-SiC, it is the only SiC polytype that can be grown directly over large area silicon substrates. It has the potential to provide a more economical choice than 4H-SiC for intermediate power devices, such as inverters for electric vehicles. To fabricate a vertical device on 3C-SiC, the Si substrate is usually removed either by etching or polishing. Neither of these processes is economical nor efficient. In this paper we propose a lateral Schottky diode design for 3C-SiC on Si structure. 2D finite element simulations using ATLAS showed that a breakdown voltage beyond 1200 V can be achieved with a 4 μm thick epilayer. Physical models used for 3C-SiC/Si power devices simulations are introduced. Advantages of lateral 3C-SiC/Si diodes over free standing 3C-SiC are also discussed.



Hide All
[1] Sharma, Y. K., Ahyi, A. C., Isaacs-Smith, T., Modic, A., Park, M., Xu, Y., et al. ., "High-Mobility Stable 4H-SiC MOSFETs Using a Thin PSG Interfacial Passivation Layer," Electron Device Letters, IEEE, vol. 34, pp. 175177, 2013.
[2] (2013, 25th Feb). Epitaxial SiC Films Grown on 300mm Si Wafers. Available:
[3] Hatta, N., Kawahara, T., Yagi, K., Nagasawa, H., Reshanov, S. A., and Schöner, A., "Reliable Method for Eliminating Stacking Fault on 3C-SiC (001)," in Materials Science Forum, 2012, pp. 173176.
[4] Bakowski, M., Schöner, A., Ericsson, P., Strömberg, H., Nagasawa, H., and Abe, M., "Development of 3C-SiC MOSFETs," Journal of Telecommunication and information Technology, vol. 2, 2007.
[5] Uchida, H., Minami, A., Sakata, T., Nagasawa, H., and Kobayashi, M., "High Temperature Performance of 3C-SiC MOSFETs with High Channel Mobility," in Materials Science Forum, 2012, pp. 11091112.
[6] Craig, F., Michael, J., Dean, H., Yogesh, S., Stephen, T., Fan, L., et al. ., "Enhanced Forward Bias Operation of 4H-SiC PiN Diodes Using High Temperature Oxidation," in 2014 MRS Spring Meeting & Exhibit, San Francisco, 2014.
[7] Yakimova, R., Vasiliauskas, R., Eriksson, J., and Syväjärvi, M., "Progress in 3C-SiC growth and novel applications," in Materials Science Forum, 2012, pp. 310.
[8] Shockley, W., "Problems related to p-n junctions in silicon," Solid-State Electronics, vol. 2, pp. 3567, 1// 1961.
[9] Nilsson, H. E., Englund, U., Hjelm, M., Bellotti, E., and Brennan, K., "Full band Monte Carlo study of high field transport in cubic phase silicon carbide," Journal of Applied Physics, vol. 93, pp. 33893394, 2003.
[10] Caughey, D. M. and Thomas, R. E., "Carrier mobilities in silicon empirically related to doping and field," Proceedings of the IEEE, vol. 55, pp. 21922193, 1967.
[11] Roschke, M. and Schwierz, F., "Electron mobility models for 4H, 6H, and 3C SiC," Electron Devices, IEEE Transactions on, vol. 48, pp. 14421447, 2001.
[12] Raynaud, C., Tournier, D., Morel, H., and Planson, D., "Comparison of high voltage and high temperature performances of wide bandgap semiconductors for vertical power devices," Diamond and Related Materials, vol. 19, pp. 16, 1// 2010.
[13] Boksteen, B., Hueting, R., Salm, C., and Schmitz, J., "An Initial study on The Reliability of Power Semiconductor Devices," 2010.


A novel 3C-SiC on Si power Schottky diode design and modelling

  • Fan Li (a1), Yogesh K. Sharma (a1), Craig A. Fisher (a1), Michael R. Jennings (a1) and Philip A. Mawby (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed