Skip to main content Accessibility help

Nonvolatile Charge Storage Characteristics of a MOS Diode with Buried Silicon Nanocrystals and Interfacial Si Nano-pyramids

  • Yu-Chung Lien (a1), Yi-Hao Pai (a2), Cheng-Tao Lin (a3) and Gong-Ru Lin (a4)


The memory effect of MOS diodes made on Si substrate with Si nanocrystals (NC-Si) and interfacial Si nano-pyramids deposited by PECVD at different ICP powers is characterized. TEM analysis on the NC-Si reveals that the NC-Si average size are around 3.9±1.1 nm and 4.7±0.7 nmwhen grown at ICP power of 20 W and 30 W, respectively. The interfacial Si nano-pyramids can only be observed by growing at 30 W or larger. The density of NC-Si of 4.4 × 1018 and 5.6 × 1018 cm−3 are relatively in good agreement with the corresponding PL intensities of 45 and 73 count/nm, respectively, for 20 and 30-W grown SiOx samples.. The C–V curves of the NC-Si embedded MOSLEDs show flat-band voltage shift of 0.74 and 18.46 Vfor 20 and 30-W samples, respectively. The C-V hysteresis width also increases by enlarging the range of sweeping voltage. A strong correlation between the size/density of Si nanocrystals and the flatband voltage difference has been concluded. In the case of the C–t measurement, the charging and discharging behaviors were found to depend on charging conditions. Finally, the relationship of the electron/hole charge density with the retention time is analyzed. Our data shows the charge loss rate of 1.3 % for electron is better at 20-Wsample, but the charge loss rate of 0.23 % for hole is better at 30-Wsample with Si NCs embedded in MOSLED after 102 s.



Hide All
1. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A. and Crabbe, E. F., “A silicon nanocrystals based memory“, Appl. Phys. Lett., 68, 1377 (1996).
2. Wan, Y. M., Buffet, N., van der Jeugd, K., Mur, P., Mariolle, D., Nicotra, G., and Lombardo, S., “Development of silicon nitride dots for nanocrystal memory cells”, Solid-State Electronics, 48, 1519 (2004)
3. Liu, Z., Lee, C., Narayanan, V., Pei, G., and Kan, E. C., “”Metal nanocrystal memories—Part I: Device design and fabrication”, IEEE Trans. Electron Devices, 49, 1606 (2002)
4. Lee, J. J., Wang, X., Bai, W., Lu, N., Liu, J., and Kwong, D. L., “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with Hf02 High-k Tunneling Dielectric”, Tech. Dig. VLSI Symposium 2003, (2003) pp.33
5. Lin, G.-R., Lin, C.-J., and Lin, C.-K., “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids”, Opt. Express, 15, 2555 (2007.)
6. Lin, G.-R., Lin, C.-J., and Yu, K.-C., “Time-resolved photoluminescence and capacitance—voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate”, J. Appl. Phys. 96, 3025 (2004).
7. Delerue, C., Allan, G., and Lannoo, M., “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B, 48, 11024 (1993).
8. Zhao, X., Schoenfeld, O., Kusano, J., Aoyagi, Y., and Sugano, T., “Observation of direct transitions in silicon nanocrystallites,” Jpn. J. Appl. Phys., 33, L899, 1994.
9. Bae, H. S., Kim, T. G., Whang, C. N., Im, S., Yun, J. S., and Song, J. H., “Electroluminescence mechanism in SiOx layers containing radiative centers,” J. Appl. Phys., 91, 4078, 2002.
10. Nishikawa, H., Watanabe, E., Ito, D., Takiyama, M., Leki, A., and Ohki, Y., “Photoluminescence study of defects in ion-implanted thermal SiO2-films,” J. Appl. Phys., 78, 842, 1995.
11. Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, K., and Hama, Y., “2.7-eV luminescence in as-manufactured high-purity silica glass,” Phys. Rev. Lett., 62, 1388, 1989.
12. Nishikawa, H., Stahlbush, R. E., and Stathis, J. H., “Oxygen-deficient centers and excess Si in buried oxide using photoluminescence spectroscopy,” Phys. Rev. B, 60, 15910, 1999.
13. Winkler, O., Merget, F., Heuser, M., Hadam, B., Baus, M., Spangenberg, B., and Kurz, H., “Concept of floating-dot memory transistors on silicon-on-insulator substrate”, Microelectron. Eng. 61, 497 (2002).
14. Kim, J. K., Cheong, H. J., Kim, Y., Yi, J. Y., and Park, H. J., “Rapid-thermal-annealing effect on lateral charge loss in metal–oxide–semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527 (2003).
15. Park, N. M., Jeon, S. H., Yang, H. D., and Hwang, H., “Size-dependent charge storage in amorphous silicon quantum dots embedded in silicon nitride”, Appl. Phys. Lett., 83, 1014, 2003.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed