Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-13T23:54:57.614Z Has data issue: false hasContentIssue false

Non-Stoichiometry and the Electronic Structure of Amorphous Silicon Nitride

Published online by Cambridge University Press:  21 February 2011

L. Ley
Affiliation:
Max-Planck Institut fuer Festkoerperforschung, D-7000 Stuttgart, F.R.G.
R. Kaercher
Affiliation:
Max-Planck Institut fuer Festkoerperforschung, D-7000 Stuttgart, F.R.G.
R. L. Johnson
Affiliation:
Max-Planck Institut fuer Festkoerperforschung, D-7000 Stuttgart, F.R.G.
Get access

Abstract

We have measured core-, valence-, and conduction band densities of states of amorphous hydrogenated (a-SiNx:H) and unhydrogenated (a-SiNx) silicon nitride with x varying between 0 and 2. From an analysis of the Si 2p core level spectra in terms of five chemically shifted components the number of Si-N bonds is calculated and compared to the total nitrogen concentration. Above x ≈ 0.8 the average silicon coordination of nitrogen starts to deviate from three. The addition of hydrogen increases this deviation because N-H bonds are favored over N-Si bonds accounting thus for the excess nitrogen concentration (x ≥ 1.33) found in hydrogenated samples. A band of N2p lone pair states is identified at the top of the valence bands in stoichiometric Si3N4. This band determines the character and position of the valence band maximum (VBM) above x = 1.1. Below x = 1.1 Si-Si bonding states mark the VBM. The conduction band minimum (CBM) is determined by Si-Si antibonding states up to x = 1.25 and its position relative to the core levels is virtually unaffected by the presence of nitrogen or hydrogen. Above x = 1.25 a percolation-like transition to Si-N antibonding states occurs which is accompanied by a sharp recession of the CBM. The position of the Fermi level within the gap is investigated as a function of x and hydrogen content. Si-H and N-H bonding states are identified at 6.3 and 9.8 eV below the VBM in nearly stoichiometric a-Si3N4. Si-Si bonding defect states lie 0.5 to 1.0 eV above the VBM and the corresponding antibonding states (3.0 ± 0.3) eV above the VBM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See e.g., Morosanu, C.-E., Thin Solid Films 65,171 (1980)10.1016/0040-6090(80)90254-0CrossRefGoogle Scholar
2. Powell, M. J., Easton, B. C., and Hill, O. F., Appl. Phys. Lett. 38, 794 (1981)10.1063/1.92166CrossRefGoogle Scholar
3. Chang, J. J., IEEE Trans. Electron. Devices ED-24, 511 (1977) and references therein10.1109/T-ED.1977.18770Google Scholar
4. Pepper, M., in Proceedings of the XXth Conference on Insulating Films on Semiconductors, Bristol, ed. by Roberts, G. G. and Morant, M. J. (IOP London, 1980) p.193, and references thereinGoogle Scholar
5. Arnett, P. C. and Yun, B. H., Appl. Phys. Lett. 26, 94 (1975)10.1063/1.88093Google Scholar
6. Hezel, R. and Shoerner, R., J. Appl. Phys. 52, 3067 (1981)10.1063/1.329058Google Scholar
7. Yokoyama, S., Hirose, M., and Osaka, Y., Jpn. J. Appl. Phys. 20, L35 (1981)10.1143/JJAP.20.L35Google Scholar
8. Shimizu, T., Oozara, S., Morimoto, A., Kumeda, M., and Ishii, N., Solar Energy Mat. 8, 311 (1982)10.1016/0165-1633(82)90074-0Google Scholar
9. Sasaki, G., Fujita, S., Sasaki, A., J. Appl. Phys. 54, 2696 (1983)10.1063/1.332293Google Scholar
10. Sequeda, F. and Richardson, R. E., J. Vac. Sci. Technol. 18, 362 (1981)10.1116/1.570785Google Scholar
11. Watanabe, K. and Wakayama, S., J. Appl. Phys. 53, 568 (1982)10.1063/1.329920Google Scholar
12. Johannessen, S., Helms, C. R., Spicer, W. E., and Strausser, W. E., IEEE Trans. Electr. Devices,ED-24, 547 (1977)10.1109/T-ED.1977.18776Google Scholar
13. Madden, H. H., J. Electrochem. Soc. 128, 625 (1981)10.1149/1.2127471CrossRefGoogle Scholar
14. Sasaki, G., Kondo, M., Fujita, S., and Sasaki, A., Jpn. J. Appl. Phys. 21, 1394 (1982)10.1143/JJAP.21.1394CrossRefGoogle Scholar
15. Fujita, S., Toyoshima, H., Nishihara, M., and Sasaki, A., J. Electr. Mater. 11, 795 (1982)10.1007/BF02672396CrossRefGoogle Scholar
16. Kurata, H., Hirose, M., and Osaka, Y., Jpn. J. Appl. Phys. 20, L811 (1981)10.1143/JJAP.20.L811Google Scholar
17. Peercy, P. S., Stein, H. J., Doyle, B. L., Picreaux, S. T., J. Electron. Mater. 8, 11 (1979)10.1007/BF02655637CrossRefGoogle Scholar
18. Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E., and Czubatyj, W., Phys. Rev. B28, 3234 (1983)10.1103/PhysRevB.28.3234Google Scholar
19. Paduschek, P. and Eichinger, P., Appl. Phys. Lett. 36, 62 (1980) 313 10.1063/1.91317CrossRefGoogle Scholar
20. Sasaki, G., Tanaka, T., Okamoto, M., Fujita, S., and Sasaki, A., J. Non-Cryst. Solids 59,60, 597 (1983)10.1016/0022-3093(83)90654-3Google Scholar
21. Robertson, J., Philos. Mag. B. 44, 215 (1981)10.1080/01418638108222558Google Scholar
22. Robertson, J., J. Appl. Phys. 54, 4490 (1983)10.1063/1.332647Google Scholar
23. Ren, S.-Y. and Ching, W. Y., Phys. Rev. B23, 5454 (1983)Google Scholar
24. Anderson, D. A. and Spear, W. E., Philos. Mag. 35, 1 (1977)10.1080/14786437708235967CrossRefGoogle Scholar
25. Baixeras, J., Mencaraglia, D., and Andro, P., Philos. Mag. B37, 403 (1978)10.1080/01418637808227680CrossRefGoogle Scholar
26. Noguchi, T., Usui, S., Sawada, A., Kanoh, Y., and Kikuchi, M., Jpn. J. Appl. Phys. 21, L485 (1982)10.1143/JJAP.21.L485Google Scholar
27. Watanabe, H., Katoh, K., and Yasui, M., Thin Solid Films 106, 263 (1983)10.1016/0040-6090(83)90338-3Google Scholar
28. Coleman, M. V. and Thomas, D. J. D., Phys. Stat. Solidi 25, 241 (1968)10.1002/pssb.19680250123Google Scholar
29. Philipp, H. R., J. Non-Cryst. Solids 810, 627 (1972)10.1016/0022-3093(72)90202-5Google Scholar
30. Kaercher, R., Ley, L., and Johnson, R. L., Phys. Rev. B30, 1896 (1984)10.1103/PhysRevB.30.1896Google Scholar
31. Ley, L., Kaercher, R., and Johnson, R. L., Phys. Rev. Lett. 53, 710 (1984)10.1103/PhysRevLett.53.710CrossRefGoogle Scholar