Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-21T05:48:35.030Z Has data issue: false hasContentIssue false

Non-Radiative Recombination in a-Si:H

Published online by Cambridge University Press:  16 February 2011

M. Schubert
Affiliation:
Fachbereich Physik und wissenschaftliches Zentrum für Materialwissenschaften, Universität Marburg, Renthof 5, D-35032 Marburg, Germany
R. Stachowitz
Affiliation:
Fachbereich Physik und wissenschaftliches Zentrum für Materialwissenschaften, Universität Marburg, Renthof 5, D-35032 Marburg, Germany
R. Saleh
Affiliation:
Fachbereich Physik und wissenschaftliches Zentrum für Materialwissenschaften, Universität Marburg, Renthof 5, D-35032 Marburg, Germany
W. Fuhs
Affiliation:
Fachbereich Physik und wissenschaftliches Zentrum für Materialwissenschaften, Universität Marburg, Renthof 5, D-35032 Marburg, Germany
Get access

Abstract

Frequency-resolved photoluminescence spectroscopy (FRS) is used to study non-radiative recombination in a-Si:H using generation rates sufficiently small to garantee geminate recombination at low temperature. The quenching of the photoluminescence by a higher defect density ND and an increase of temperature influences the QFRS spectra differently: Whereas for increasing ND the quenching of the signal is more pronounced on the low frequency side raising temperature leads to a uniform decrease in the entire frequency range. The dependence of the lifetime distribution on ND is quantitatively explained in a model where radiative recombination competes with non-radiative tunneling into defect states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tsang, C. and Street, R. A., Phil. Mag. B 37 (1978) 601 CrossRefGoogle Scholar
[2] Bort, M., Carius, R. and Fuhs, W., J. Non-Cryst. Sol. 114 (1989) 280 Google Scholar
[3] Baranovskii, S.D., Saleh, R., Thomas, P., Vaupel, H., J. Non-cryst. Sol. 137&138 (1991) 567 Google Scholar
[4] Depinna, S. P. and Dunstan, D. J., Phil. Mag. B 50 (1984) 579 Google Scholar
[5] Stachowitz, R., Schubert, M. and Fuhs, W., J. Non-Cryst. Sol. 164–166 (1993) 583 Google Scholar
[6] Stachowitz, R., Schubert, M. and Fuhs, W., to be published in Phil. Mag. BGoogle Scholar
[7] Reiss, H., J. Chem. Phys. 25 (1956) 400 CrossRefGoogle Scholar
[8] Stachowitz, R., Schubert, M., Saleh, R. and Fuhs, W., to be publishedGoogle Scholar
[9] Street, R. A., Adv. Phys. 30 (1981) 593 Google Scholar
[10] Bort, M., Fuhs, W., Liedtke, S. and Stachowitz, R., Phil. Mag. Lett. 64 (1991) 227 CrossRefGoogle Scholar
[11] Schubert, M., Stachowitz, R., Saleh, R. and Fuhs, W., J. Non-cryst. Sol. 164–166 (1993) 555 CrossRefGoogle Scholar
[12] Oheda, H., J. Non-Cryst. Sol. 164–166 (1993) 559 CrossRefGoogle Scholar