Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T13:40:50.400Z Has data issue: false hasContentIssue false

Non-Polar GaN/AlN Superlattices on A-plane AlN (500nm) Buffer Layers Grown by RF-MBE

Published online by Cambridge University Press:  01 February 2011

Takayuki Morita
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University 7–1, Kioi-cho, Chiyoda-ku, Tokyo, 102–8554, Japan
Akihiko Kikuchi
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University 7–1, Kioi-cho, Chiyoda-ku, Tokyo, 102–8554, Japan
Katsumi Kishino
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University 7–1, Kioi-cho, Chiyoda-ku, Tokyo, 102–8554, Japan
Get access

Abstract

The growth conditions of A-plane AlN and GaN epitaxial layers by radio-frequency plasma assisted molecular beam epitaxy on R-plane sapphire substrates were investigated. The growth temperature and V/III supply ratio dependency on structural quality and surface roughness was described. The optimum V/III ratio for A-plane GaN and AlN layers was shifted to nitrogen rich side compared to the C-plane layers. A-plane GaN/AlN superlattices (SLs) were also grown on R-plane sapphire substrates. The X-ray diffraction peaks from a primary and a 1st satellite were observed. From a comparison of low temperature photoluminescence peak wavelength between A-plane and C-plane SLs, the built-in electrostatic field originated from spontaneous and piezoelectric polarization is negligible for A-plane SLs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iizuka, N., Kaneko, K., Suzuki, N., Asano, T., Noda, S., Wada, O., Appl. Phys. Lett., 77 (2000) 648.Google Scholar
2. Kishino, K., Kikuchi, A., Kanazawa, H., Tachibana, T., Appl. Phys. Lett., 81(2002) 1234.Google Scholar
3. Heber, J. D., Gmachl, C., Ng, H. M., Cho, A. Y., Appl. Phys. Lett., 81(2002) 1237.Google Scholar
4. Hamazaki, J., Matsui, S., Kunugita, H., Ema, K., Kanazawa, H., Tachibana, T., Kikuchi, A., and Kishino, K., Appl. Phys. Lett., 84 7 (2004) 1102.Google Scholar
5. Kikuchi, A., Bannai, R. and Kishino, K., physica status solidi (a), 188 (2001) 187.Google Scholar
6. Kikuchi, A., Bannai, R., Kishino, K., Lee, C.M., Chyi, J.I., Appl. Phys. Lett., 81 (2002) 1729.Google Scholar
7. Ng, H. M., Appl. Phys. Lett., 80 (2002) 4369.Google Scholar
8. Ng, H. M., Bell, A., Ponce, F. A., Chu, S.N.G., Appl. Phys. Lett., 83 (2003) 653.Google Scholar
9. Craven, M. D., Waltereit, P., Speck, J. S., DenBaars, S. P., Appl. Phys. Lett., 84 (2003) 496.Google Scholar
10. Hiramatsu, K., Nishiyama, K., Motogaito, A., Miyake, H., Iyechika, Y., Maeda, T., Phys. Stat. Sol. (a) 176, 535 (1999)Google Scholar
11. Yu, H. B., Chen, H., Li, D., Han, Y. J., Zheng, X. H., Huang, Q., Zhou, J. M., J. Cryst. Growth., 263 (2003) 94.Google Scholar