Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-09T10:23:17.456Z Has data issue: false hasContentIssue false

Nonlinear Optical Study of Si Epitaxy

Published online by Cambridge University Press:  28 February 2011

T. F. Heinz
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
M. M. T. Loy
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
S. S. Iyer
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The applicability of the nonlinear optical technique of surface second-harmonic generation to in-situ studies of epitaxial and non-epitaxial crystal growth of centrosymmetric materials is demonstrated. In measurements of the deposition of atomic Si on Si(111)-7×7 surfaces, the (anisotropic) second-harmonic response is seen to be sensitive to the ordering of fractional monolayers of adatoms. For deposition on a substrate held at room temperature, the second-harmonic data are consistent with the formation of a disordered adlayer on top of the original reconstructed surface. The results of real-time measurements of the thermal annealing of disordered Si adlayers of monolayer thickness are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Shen, Y. R., in Beam-Solid Interactions and Phase Transformations edited by Kurz, H., Olson, G. L., and Poate, J. M. (Material Research Society, Pittsburgh, 1986), Mat. Res. Soc. Symp. Proc. 51, 39 (1986).Google Scholar
2. Heinz, T. F., Loy, M. M. T., and Thompson, W. A., Phys. Rev. Lett. 54, 63 (1985).Google Scholar
3. Heinz, T. F., Loy, M. M. T., and Thompson, W. A., J. Vac. Sci. Technol. B 3, 1467 (1985).Google Scholar
4. Tom, H. W. K. and Aumiller, G. D., Phys. Rev. B 33, 8818 (1986).Google Scholar
5. Tom, H. W. K., Zhu, X. D., Shen, Y. R., Somorjai, G. A., Surface Sci. 167 167 (1986).Google Scholar
6. Shen, Y. R., The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
7. Bloembergen, N., Chang, R. K., Jha, S. S., and Lee, C. H., Phys. Rev. 174, 813 (1968).Google Scholar
8. For the case of oxidized silicon surfaces, the bulk terms are more important and have been considered previously. See Tom, H. W. K., Heinz, T. F., and Shen, Y. R., Phys. Rev. Lett. 51, 1983 (1983); J. A. Litwin, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 31, 5543 (1985).Google Scholar
9. Heinz, T. F., Tom, H. W. K., Shen, Y. R., Phys. Rev. A 28, 1883 (1983).Google Scholar
10. The presence of the reconstructed Si(111)-7×7 surface beneath an amorphous Si adlayer is suggested by ion scattering studies. See Gossmann, H.-J. and Feldman, L. C., Phys. Rev. B 32 6 (1985).Google Scholar
11. See for example, Olson, G. L., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V. (Material Research Society, Pittsburgh, 1985), Mat. Res. Soc. Symp. Proc. 35, 25 (1985).Google Scholar
12. See Kasper, E., Appl. Phys. A 28, 129 (1982) and references therein.Google Scholar
13. See [10] and Gronwald, K. D. and Henzler, M., Surface Sci. 117, 180 (1982) for studies of the structure of silicon surfaces after Si deposition.CrossRefGoogle Scholar
14. Heinz, T. F., Loy, M. M. T., and Iyer, S. S., to be published.Google Scholar
15. Abbink, H. C., Broudy, R. M., and McCarthy, G. P., J. Appl. Phys. 39, 4673 (1968).Google Scholar