Skip to main content Accessibility help
×
Home

Nonlinear Optical Properties of Organic Photorefractive Polymers

  • W. E. Moerner (a1), C. A. Walsh (a1), S. M. Silence (a1), R. J. Twieg (a1), T. J. Matray (a1), J. C. Scott (a1), V. Y. Lee (a1), R. D. Miller (a1), F. Hache (a1), D. M. Burland (a1) and G. C. Bjorklund (a1)...

Abstract

This paper describes the photorefractive properties of a new and growing class of materials exhibiting the effect, doped nonlinear organic polymers. We show directly using a PMMA-based copolymer with a pendant nonlinear nitroaminotolane chromophore doped with a charge transport agent that the presence of photoconductivity and optical nonlinearity are only necessary, but not sufficient to guarantee that a given materials system will yield measurable photorefractive gratings, rather than gratings due to some other process such as photochromism. To prove photorefractivity unequivocally, direct measurement of the spatial phase shift between the intensity pattern and the index modulation is best, and we summarize a convenient way to do this using two-beam coupling and sample translation. In addition to the photorefractive epoxy materials such as bisA-NPDA:DEH reported earlier (Phys. Rev. Lett. 66, 1846 (1991); Proc. SPIE 1560, 278 (1992)), a new PMMA-based copolymer with pendant p-nitroaniline chromophores doped with DEH also shows photorefractive grating formation, with writing speed 100 times higher than that for the epoxy material.

Copyright

References

Hide All
1. Chen, F. S., J. Appl. Phys. 38. 3418 (1967).
2. Valley, G. C., Klein, M. B., Mullen, R. A., Rytz, D., and Wechsler, B., Ann. Rev. Mater. Sci. 18, 165 (1988) and references therein.
3. Eichler, H. J., Günter, P., and Pohl, D. W., Laser-Induced Dynamic Gratings, Springer Series in Optical Sciences, Vol.50 (Springer, Berlin, Heidelberg, 1986).
4. Feinberg, J., Phys. Today 41, 46 (1988).
5. Cronin-Golomb, M. and Yariv, A.,.. Appl. Phys. 57, 4906 (1985).
6.. Anderson, D. Z., Lininger, D. M., and Feinberg, J., Opt. Lett 12, 123 (1987).
7. Anderson, D. Z. and Feinberg, J., IEEE. J. Quant. Elec. 25, 635 (1989).
8. Feinberg, J., Opt. Lett. 7, 486 (1982).
9. Feinberg, J., in Optical Phase Contjugalion, Fisher, R. A., ed. (Academic, New York, 1983), pp. 417443.
10. Huignard, J. P. and Marrakchi, A., Opt. Common. 38, 249 (1981).
11. Ducharme, S., Scott, J. C., Twieg, R. J., and Moerner, W. E., Postdcadline Paper, OSA Annual Meeting, Boston, MA, November 5–9, 1990.
12. Sutter, K., Hullinger, J., and Günter, P., Sol. St. Commun. 74, 867 (1990).
13. Sutter, K. and Günter, P., J. Opt. Soc. Am. B 7, 2274 (1990).
14. Schildkraut, J. S., Appl. Phys. Lett. 58, 340 (1991).
15. Li, L., Lee, J. Y., Yang, Y., Kummar, J., and Tripathy, S. K., Appl. Phys. B 53, 279 (1991).
16. Ducharme, S.,.. Scott, J. C., Twieg, R. J., and Mocrner, W. E., Phys. Rev. Left. 66, 1846 (1991).
17. Eich, M., Reck, B., Yoon, D. Y., Willson, C. G., and Bjorklund, G. C., J. Appl. Phys. 66, 3241 (1989).
18. Moerner, W. E., Walsh, C., Scott, J. C., Ducharme, S., Burland, D. M., Bjorklund, G. C., and Twieg, R. J., Proc. Soc. Photo-Opt. Instrum. Engr. NI.O IV 1560, 278 (1991).
19. Scott, J. C., Pautmeier, L. Th., and Moerner, W. E., subm. to Opt. Soc. Ani. B (1992).
20. Sturmer, D. M. and Heseltine, D. W., in The Theory of the Photographic Process, 4th ed., James, T. H., ed. (Macmillan, New York, 1977), pp. 194234.
21. Walsh, C. A. and Moerner, W. E., J. Opt. Soc. Am. B (to appear, Sept. 1992).
22. Scott, J. C., et al., following paper.
23. Partovi, A., Kost, A., Garmire, E. M., Valley, G. C., and Klein, M. B., Appl. Phys. Lett. 56, 1089 (1990).
24. Gelsen, O. M., Bradley, D. D. C., Murata, H., Tsutsti, T., Saito, S., Röhe, J., and Wegner, G., Synth. Met. 41, 875 (1991).
25. See for examples Brown, G. H., ed., Photochromism, (Techniques of Chemistry, vol III) (Wiley-lnterscience, New York, 1971).
26. Kondilenko, V., Markov, V., Odulov, S., and Soskin, M., Optica Acta 26, 239 (1979).
27. Gehrtz, M., Pinsl, J., and Bräuchle, C., Appl. Phys. B 43, 61 (1987).
28. Zha, M. Z., Amrhein, P., and Günter, P., IFELE. J. Quant. Elec. 26, 788 (1990).
29. Kogelnik, H., Bell Syst. Tech. J. 48, 2909 (1969).
30. Valley, G. C. and Lam, J. F., in Photorefractive Materials and their Applications I, Günter, P. and Huignard, J.-P., eds., (Springer Verlag, Berlin 1988), p. 84.
31. Silence, S. M., Walsh, C. A., Scott, J. C., Matray, T. J., Twieg, R. J., Hache, F., Bjorklund, G. C., and Moerner, W. E., subm. to Opt. Lett. (1992).
32. Bashaw, M. C., Ma, T.-P., Barker, R. C., Mroczkowski, S., andt Dube, R. R., Phys. Rev. B 42, 5641 (1990).
33. Pope, M. and Swenberg, C. E., Electironic Processes in Organic Crystals, (Clarendon, Oxford, 1982), p. 748 cf.

Nonlinear Optical Properties of Organic Photorefractive Polymers

  • W. E. Moerner (a1), C. A. Walsh (a1), S. M. Silence (a1), R. J. Twieg (a1), T. J. Matray (a1), J. C. Scott (a1), V. Y. Lee (a1), R. D. Miller (a1), F. Hache (a1), D. M. Burland (a1) and G. C. Bjorklund (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed