Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-11T01:05:04.555Z Has data issue: false hasContentIssue false

Nonlinear Optical Mapping of Cubic Silicon Carbide Micron Areas In Epitaxial Films of Hexagonal Polytypes

Published online by Cambridge University Press:  10 February 2011

G. Lüpke
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
C. Meyer
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
O. Busch
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
E. Stein von Kamicuski
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
A. Göz
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
H. Kurz
Affiliation:
Institute of Semiconductor Electronics H, Rheinisch- West fälische Technische Hochschule, D-52056 Aachen, Germany
Get access

Abstract

Various silicon carbide polytypes, such as 4H-, 6H- and 3C-SiC are clearly distinguished by the magnitude and rotational anisotropy of their optical second-harmonic (SH) response. The large dynamic range of the SH response of more than two orders of magnitude between these polytypes allows a fast and non-invasive mapping of 3C-SiC micron areas in 4H - and 6H-SiC epilayers. 3C-Microcrystallites of different oricutations are identified from SH rotational anisotropy scans.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Verma, A. R. and Krishina, P., Polymorphism and Polytypism in Crystals, New York: Wiley, 1966.Google Scholar
[2] Din, S. and Suleman, M., Mater. Lett. 17, 241 (1993).Google Scholar
[3] Davis, R. F., Kelner, G., Shur, M., Ialhiour, J. W., and.. Edimond, A., Proc. of the IEEE 79, 677 (1991).Google Scholar
[4] Shibara, K., Saito, T., Nishino, S., and Matsunami, H., IEEE Electr. Dev. Lett. EDL–7. 692 (1986).Google Scholar
[5] Knippenberg, W. F., Philips Res. Rep. 18, 161 (1963).Google Scholar
[6] Shibara, K., Nislhino, S., and Matsunami, H., Journal of Crystal Growth 78, 538 (1986).Google Scholar
[7] Wang, Y. C. and Davis, R.F.,.Journal of Electronic Materials 20, 869 (1991).Google Scholar
[8] Powell, J. A. et al., Appl. Phys. Let.. 59, 333 (1991).Google Scholar
[9] Dudlea, M. et al.,.J. Phys. D: Appl. Phys. 28, A56 (1995).Google Scholar
[10] Meyer, C., Lüpke, G., Kamienski, E. Stein von, Gölz, A.. and Kurz, H., Apph. Phys. Lett. 69, 2243 (1996).Google Scholar
[11] Shen, Y. R., Nature 337, 519 (1989).Google Scholar
[12] Heinz, T. F., Second-order nonlinear optical effects at surfaces and interfaces, in Non-linear Surface Elect ronagnetic Phenomena, edited by Ponath, H.-E. and Stegeman, G., chapter 5, pages 353–416, Elscvier Science Publishers B.V., 1991.Google Scholar
[13] Meyer, C. et al., J. Vac. Sci. Technol. B 14, 3107 (1996).Google Scholar
[14] Amzallag, J. et a.l., Appl. Phys. Lett. 66, 982 (1995).Google Scholar
[15] Bottomley, D. J., Lüpke, G., Legerwood, M. L., Zhoii, X. Q., and Driel, H. M. van, Appl. Phys. Lett. 63, 2324 (1993).Google Scholar
[16] Galeckas, A., Petrauskas, M., Wahab, Q., and Willander, M., Nucl. Instr. and Meth. in Phys. Res. B 65, 357 (1992).Google Scholar
[17] Bottomley, D. J., Lüpke, G., Mihaychuk, J. G., and Driel, H. M. van, J. Appl. Phys. 74, 6072 (1993).Google Scholar
[18] Flörsheimer, M., Looser, H., Küpfer, M., and Güter, P., Thin Solid Films 244, 1001 (1994).Google Scholar