Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-21T01:01:41.766Z Has data issue: false hasContentIssue false

Nonlinear Optical and Transport Properties of Fullerene Crystals

Published online by Cambridge University Press:  15 February 2011

Hugh J. Byrne
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Lidia Akselrod
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Andreas T. Werner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Wolfgang K. Maser
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Mathias Kaiser
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Wolfgang W. RÜhle
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Siegmar Roth
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569-Stuttgart, Germany
Get access

Abstract

Picosecond time resolved photoluminescence and photoconductivity measurements are performed to investigate the influence of high intensity illumination on the properties of Fullerene crystals. A highly nonlinear dependence of both the photoluminescence characteristics and the photoconductive response of the fullerenes is seen and temperature dependent measurements indicate that the nonlinear processes are associated with an insulatormetal-like phase transition in the material, and thus that the electronic properties of the excited state are dramatically altered at high excited state densities. The observed behaviour is compared and contrasted to the changes in the optical properties upon photochemical modification of the pristine material via Raman spectroscopy. Application of a simple phenomenological model to calculate the contribution of intermolecular exchange and correlation energies in the excited state supports the proposal that the observed phenomena originate from a Mott-like phase transition. A further manifestation of this behaviour is the emergence of a broadband electroluminescent emission above a critical injection current density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tutt, L.W. and Kost, A., Nature, 356, 225(1992).Google Scholar
2. Leach, S., Vervloet, M., Despres, A., Breheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., and Walton, D.R.M., Chem. Phys., 160, 451 (1992)Google Scholar
3. Ebbesen, T.W., Tanigaki, K. and Kuroshima, S., Chem. Phys. Lett., 181, 501(1991).Google Scholar
4. Bethune, D.S., Meijer, G., Tang, W.C., Rosen, H.J., Golden, W.G., Seki, H., Brown, C.A. and Vries, M.S. de, Chem. Phys. Lett., 179, 181 (1991).Google Scholar
5. Ching, W.Y., Huang, M.-Z., Xu, Y.-N., Harter, W.G. and Chan, F.T., Phys. Rev. Lett., 67, 2045 (1991).Google Scholar
6. Zamboni, R., Muchini, M., Danieli, R., Taliani, C., Mohn, H., Müller, W. and ter Meer, H.-U., to be published in the proceedings of the SPIE symposium on “Fullerenes and Photonics”, San Diego, July 1994.Google Scholar
7. Eklund, P.C., Dong, Z.-H., Wang, Y., Holden, M.J., Wang, K.A., Zhou, P., Rao, A.M., Dresselhaus, G. and Dresselhaus, M.S., in Electronic Propertiesof Fullerenes, edited by Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (Springer Series in Solid State Sciences 117, Springer Verlag, Heidelberg 1993) p. 413.Google Scholar
8. Byrne, H.J., Maser, W., Ruihle, W.W., Mittelbach, A., Honle, W., Schnering, H.G. von, Movaghar, B., Roth, S., Chem. Phys. Lett. 204, 461 (1993)Google Scholar
9. Groenen, E.J.J., Poloektov, O.G., Matsushita, M., Schmidt, J., Waals, J.H. van der, Chem. Phys. Lett., 197, 314 (1992)Google Scholar
10. Groenen, E.J.J. and Schmidt, J., in Progress in Fullerene Research, pp397, edited by Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (World Scientific Publishing, Singapore 1994).Google Scholar
11. Feldmann, J., GuB, W., GObel, E.O., Taliani, C., Mohn, H., Müller, W. and ter Meer, H.-U., in Progress in Fullerene Research, pp416, edited by Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (World Scientific Publishing, Singapore 1994).Google Scholar
12. Ebbesen, T.W., Mochizuki, Y., Tanigaki, K. and Hiura, H., Europhys. Lett., 25, 503, (1994).Google Scholar
13. Snoke, D.W., Syassen, K. and Mittelbach, A., Phys. Rev., B47, 4146 (1993)Google Scholar
14. Akselrod, L., Byrne, H.J., Sutto, T.E. and Roth, S., Chem. Phys. Lett., submitted.Google Scholar
15. Reber, C., Yee, L., McKiernan, J., Zink, J.I., Williams, R.S., Tong, W.M., Ohlberg, D.A.A., Whetten, R.L. and Diederich, F., J. Phys. Chem., 95, 2127 (1991).Google Scholar
16. Byrne, H.J., Maser, W.K., Riihle, W.W., Mittelbach, A. and Roth, S., Appl. Phys. A56, 235 (1993).Google Scholar
17. Akselrod, L., Byrne, H.J., Callaghan, J., Mittelbach, A. and Roth, S., in Electronic Properties of Fullerenes, edited by Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (Springer Series in Solid State Sciences 117, Springer Verlag, Heidelberg 1993) p. 219.Google Scholar
18. Kaiser, M., PhD. Thesis, Univ. of Karlsruhe, Germany (1993)Google Scholar
19. Yonehara, H. and Pac, C., Appl. Phys. Lett., 61, 575 (1992).Google Scholar
20. Zhou, P., Rao, A.M., Wang, K.-A., Robertson, J.D., Eloi, C., Meier, M.S., Ren, S.L., Bi, X.-X. and Eklund, P.C., Appl. Phys. Lett., 60, 2871 (1992)Google Scholar
21. Akselrod, L., Byrne, H.J., Thomsen, C., Mittelbach, A. and Roth, S., Chem. Phys. Lett., 212, 384 (1993)Google Scholar
22. Zhou, P., Dong, Z.-H., Rao, A.M., and Eklund, P.C., Chem. Phys. Lett., 211, 337 (1993)Google Scholar
23. Kuzmany, H., Matus, M., Pichler, T., and Winter, J., in the Proceedings NATO ARW on Physics and Chemistry of Fullerenes, NATO ASI-C series, (Crete 1993).Google Scholar
24. Byrne, H.J., Akselrod, L., Thomsen, C., Mittelbach, A. and Roth, S., Appl. Phys., A57, 299 (1993)Google Scholar
25. Akselrod, L., Byrne, H.J., Thomsen, C. and Roth, S., Chem. Phys. Lett., 215, 131 (1993).Google Scholar
26. Snoke, D.W. and Cardona, M., Solid State Commun., 87, 121 (1993).Google Scholar
27. Wang, Y., Holden, J.M., Dong, Z.-H., Bi, Xiang-Xin, and Eklund, P.C., Chem. Phys. Lett., 211, 341 (1993).Google Scholar
28. Rao, A.M., Zhou, Ping, Wang, Kai-An, Hager, G.T., Holden, J.M., Wang, Ying, Lee, W.-T., Bi, Xiang-Xin, Eklund, P.C., Cornett, D.S., Duncan, M.A., Amster, I.J., Science, 259, 955 (1993).Google Scholar
29. Wang, Y., Holden, J.M., Bi, Xiang-Xin, and Eklund, P.C., Chem. Phys. Lett., 217,413 (1994).Google Scholar
30. Venkatesan, K. and Ramamurthy, V., Photochemistry in Organized and Constrained Media, pp133 (VCH, New York, 1991).Google Scholar
31. See for example Physics of Highly Excited States in Solids, edited by Ueta, M. and Nishina, Y., (Lecture Notes in Physics vol. 57, Springer Verlag, Heidelberg 1976).Google Scholar
32. Souma, H., Goto, T., Ohta, T. and Ueta, M., J. Phys. Soc. Japan, 29, 697 (1970).Google Scholar
33. Electron-Hole Droplets in Semiconductors, edited by Jeffries, C.D. and Keldish, L.V., (North Holland, Amsterdam 1983)Google Scholar
34. Thomas, G.A., Frova, A., Hensel, J.C., Miller, R.E. and Lee, P.E., Phys. Rev. B13, 1692 (1976).Google Scholar
35. Hammond, R.B., McGill, T.C. and Mayer, J.W., Phys. Rev. B13, 3566 (1976).Google Scholar
36. Kaminskii, A., Pokrovskii, YA. and Alkeev, N., Zh. eksper. teor. Fiz., 59, 1937 (1970).Google Scholar
37. Pokrovskii, YA., phys. stat. sol. (a), 11, 385 (1972).Google Scholar
38. Westervelt, R.M., Lo, T.K., Staehli, J.L. and Jeffries, C.D., Phys. Rev. Lett., 32, 1051 (1974).Google Scholar
39. Glicksman, M., Gurnee, M.N. and Meyer, J.R., in (42), pp219.Google Scholar
40. Keldysh, L., Proc. IX. Internat. Conf. Phys. Semicond., Moscow 1968, pp1307.Google Scholar
41. Lof, R.W., Veenendaal, M.A. van, Koopmans, B., Jonkman, H.T. and Sawatsky, G.A., Phys. Rev. Lett., 68, 3924(1992).Google Scholar
42. Ching, W.Y., Huang, M.-Z., Xu, Y.-N., Harter, W.G. and Chan, F.T., Phys. Rev. Lett., 67, 2045 (1992).Google Scholar
43. Kelly, M.K., Etchegoin, P., Fuchs, D., Kriitschmer, W. and Fostiropoulus, K., Phys. Rev. B46, 4963 (1992).Google Scholar
44. Mott, N.F., Metal-Insulator Transitions (Taylor and Francis Ltd. 1974)Google Scholar
45. Vashista, P. and Kalia, R.K., Phys. Rev. B25, 6492 (1982).Google Scholar
46. Werner, A.T., Anders, J., Byrne, H.J., Maser, W.K., Kaiser, M., Mittelbach, A. and Roth, S., Appl. Phys. A57, 157 (1993).Google Scholar