Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T14:08:38.040Z Has data issue: false hasContentIssue false

Non-Equilibrium Wetting at Aluminium-Sapphire Interfaces

Published online by Cambridge University Press:  21 March 2011

George Levi
Affiliation:
Department of Materials Engineering Technion-Israel Institute of Technology 32000 Haifa, Israel
Wayne D. Kaplan
Affiliation:
Department of Materials Engineering Technion-Israel Institute of Technology 32000 Haifa, Israel
Get access

Abstract

Under most experimental conditions, the wetting of Al2O3 by liquid Al is a non-equilibrium phenomenon characterised by the continuous oxidation of Al. While the effect of oxygen at the liquid Al-vapour interface appears to be well understood, less is known about the influence of oxygen at the liquid Al-sapphire interface, due to a lack of microstructural evidence. Sessile drop experiments of liquid Al on sapphire (α-Al2O3) were conducted under a low pressure (10-3Torr) controlled Ar atmosphere as a function of oxygen partial pressure, temperature and/or time. Microstructural investigations of the samples from the wetting experiments indicated that two different dominant processes occur at the liquid Al-sapphire interface: epitaxial growth of new α-Al2O3 layers on the sapphire substrate at temperatures below ≍1100°C and dissolution of the sapphire substrate at temperatures above ≍1100°C.

The microstructural evidence indicates possible mechanisms by which oxygen is involved in the non-equilibrium wetting and adhesion of liquid Al on sapphire. The non-wetting to wetting transition in this system may be explained by the formation of an oxygen-rich interphase at the liquid Al-sapphire interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonas, T.R., Cornie, J. A., Russell, K. C., Metall. Mat. Trans. A 26A, 1491 (1995).Google Scholar
2. Gupta, V., Argon, A. S., Cornie, J. A., J. Mat. Sci. 24, 2031 (1989).Google Scholar
3. Dalgleish, B. J., Saiz, E., Tomsia, A. P., Cannon, R. M., Ritchie, R. O., Scripta Metall. 31 (8), 1109 (1994).Google Scholar
4. Rühle, M., Evans, A. G., Mat. Sci. & Eng. A, A107, 187 (1989).Google Scholar
5. Massalski, T. B., Okamoto, H., Subramanian, P. R., Kacprzak, L., Binary Alloy Phase Diagrams, 2nd edition, (ASM International, 1990), vol. I, p. 185.Google Scholar
6. CRC Handbook of Chemistry and Physics – 60th edition, edited by Weast, R. C., (CRC Press, Inc., Boca Raton, 1980), p. D45.Google Scholar
7. Kubaschewski, O., Hopkins, B. E., Oxidation of Metals and Alloys, (Butterworths, London, 1962).Google Scholar
8. Kaplan, W. D., in Interfacial Science in Ceramic Joining, ed. by Bellosi, A., Kosmac, T., and Tomsia, A.P., (Kluwer Publishers, 1998), p. 153160.Google Scholar
9. Wang, Duan-Jen, Wu, Shinn-Tyan, Acta Metall. 42 (12), 4029 (1994).Google Scholar
10. Laurent, V., Chatain, D., Chatillon, C., Eustathopoulos, N., Acta Metall. 36 (7), 1797, (1988).Google Scholar
11. Carnahan, R.D., Johnson, T.L., Li, C.H., J. Amer. Ceram. Soc. 41, 343, (1958).Google Scholar
12. Champion, J.A., Keene, B.J, Silwood, J.M., J. Mat. Sci. 4, 39, (1969).Google Scholar
13. Saiz, E., Tomsia, A. P., Cannon, R. M., Acta Mater. 46 (7), 2349, (1998).Google Scholar
14. Saiz, E., Cannon, R.M., Tomsia, A.P., Acta Mater. 47 (15), 4209, (1999).Google Scholar
15. John, H., Hausner, H., J. Mat. Sci. Let. 5, 549, (1986).Google Scholar
16. Brennan, J. J., Pask, J. A., J. Amer. Cer. Soc., 51 (10), 569, (1968).Google Scholar
17. Wolf, S. M., Levitt, A. P., Brown, J., Chemical Engineering Progress, 62 (3), 74, (1966).Google Scholar
18. Zhou, X. B., Hosson, J. T. M. De, J. Mat. Sci., 30, 3571, (1995).Google Scholar
19. Venables, J. A., Harland, C. J., Phil. Mag., 27, 1193, (1973).Google Scholar
20. Dingley, D. J., Randle, V., J. Mat. Sci., 27, 4545, (1992).Google Scholar
21. Otsuka, S., Kozuka, Z., Transactions of the Japan Institute of Metals, 22 (8), 558, (1981).Google Scholar
22. Levi, G., Kaplan, W. D., Iron as an Oxygen Tracer at the Liquid Aluminium-Alumina Interface, to be submitted, January 2001 Google Scholar