Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T23:51:14.187Z Has data issue: false hasContentIssue false

Non-Alloyed Ohmic Contacts to n-GaAs Using Epitaxial Ge Layers

Published online by Cambridge University Press:  26 February 2011

T. Sawada
Affiliation:
University of California at San Diego, La Mia, CA 92093
W. X. Chen
Affiliation:
University of California at San Diego, La Mia, CA 92093
E. D. Marshall
Affiliation:
University of California at San Diego, La Mia, CA 92093
K. L. Kavanagh
Affiliation:
Cornell University, Ithaca, N. Y. 14853
T. F. Kuech
Affiliation:
IBM Watson Research Center, Yorktown Heights, N.Y. 10598
C. S. Pai
Affiliation:
University of California at San Diego, La Mia, CA 92093
S. S. Lau
Affiliation:
University of California at San Diego, La Mia, CA 92093
Get access

Abstract

Alloyed ohmic contacts (i.e. Au-Ge-Ni) to n-GaAs lead to non-planar interfaces which are unsuitable for devices with shallow junctions and small dimensions. In this study, the fabrication of non-alloyed ohmic contacts (via solid state reactions) is investigated. A layered structure involving the solid phase epitaxy of Ge using a transport medium (PdGe) is shown to produce low (1 — 5 × 10∼6Ω cm2) and reproducible values of contact resistivity. The resultant interface is shown to be abrupt by cross-sectional transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Breslau, N., Gunn, J. B., and Staples, J. L., Solid-State Electron. 10, 381 (1967).Google Scholar
[2] Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H. and Wilkie, E. L., J. Appl. Phys. 54, 6952 (1983).Google Scholar
[3] Braslau, N., J. Vac. Sci. Technol. 19, 803 (1981).Google Scholar
[4] Woodall, J. M., Freeouf, J. L., Pettit, G. D., Jackson, T. and Kirchner, P., J. Vac. Sci. Technol. 19, 636 (1981).Google Scholar
[5] Stall, R., Wood, C. E. C., Board, K., Dandekar, N., Eastman, L. F., and Devlin, J., J. Appl. Phys. 52, 4062 (1981).Google Scholar
[6] Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981), p. 291.Google Scholar
[7] Kirchner, P. D., Jackson, T. N., Pettit, G. D. and Woodall, J. M., Appl. Phys. Lett. 47, 26 (1985).Google Scholar
[8] Anderson, W. T. Jr, Christou, A. and Davy, J. E., IEEE J. Solid State Circuits SC–13, 430 (1978).Google Scholar
[9] Sinha, A. K., Smith, T. E. and Levenstein, M. J., IEEE Trans. Electron. Devices ED–22, 218 (1975).Google Scholar
[10] Grinolds, H. H. and Robinson, G. Y., Solid State Electron. 23, 973 (1980).Google Scholar
[11] Tiwari, S., Kuan, T-S. and Tierney, E., International Electron Device Meeting Technical Digest, 1983. p. 115.Google Scholar
[12] Marshall, E. D., Chen, W. X., Wu, C. S., Lau, S. S. and Kuech, T. F., Appl. Phys. Lett., 47 298 (1985).Google Scholar
[13] Ballingall, J. M., Wood, C. E. C. and Eastman, L. F., J. Vac. Sci. Technol. B1, 675 (1983).Google Scholar
[14] Chiaradia, P., Katnani, A. D., Sang, H. W. Jr, and Bauer, R. S., Phys. Rev. Lett. 52, 1246 (1984).Google Scholar
[15] Marshall, E. D., Wu, C. S., Pai, C. S., Scott, D. M. and Lau, S. S., Mat. Res. Soc. Symp. Proc, Vol. 47, 1985, p. 161.Google Scholar
[16] Berger, H. H., Solid State Electron. 15, 145 (1972).Google Scholar
[17] The actual values of contact separation were measured with a calibrated optical microscope reticle for every contact pattern. This led to greater accuracy in the determination of the specific contact resistivity.Google Scholar
[18] Zur, A. and McGill, T. C., J. Vac. Sci. Technol. B2, 440 (1984).Google Scholar
[19] Kuan, T. S., Freeouf, J. L., Batson, P. E. and Wilkie, E. L., J. Appl. Phys. 58 1519 (1985).Google Scholar
[20] Palmstrom, C. J. and Galvin, G. J., Appl. Phys. Lett. 47 815 (1985).Google Scholar