Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T08:32:03.286Z Has data issue: false hasContentIssue false

Nmos Transistors Fabricated by Simultaneous Laser-Assisted Crystallization and Diffusion on Silicon on Electro-Optic PLZT

Published online by Cambridge University Press:  26 February 2011

J. H. Wang
Affiliation:
Dept. of Elec. & Comp. Eng., University of California, San Diego, La Jolla, CA 92093
T. H. Lin
Affiliation:
Dept. of Elec. & Comp. Eng., University of California, San Diego, La Jolla, CA 92093
S. C. Esener
Affiliation:
Dept. of Elec. & Comp. Eng., University of California, San Diego, La Jolla, CA 92093
S. Dasgupta
Affiliation:
Dept. of Elec. & Comp. Eng., University of California, San Diego, La Jolla, CA 92093
S. H. Lee
Affiliation:
Dept. of Elec. & Comp. Eng., University of California, San Diego, La Jolla, CA 92093
Get access

Abstract

Simultaneous CW laser assisted crystallization and diffusion for fabricating NMOS transistors on Si/SiO2/PLZT is presented. Hall effect measurement (mobility 74cm2V−1sec×1019cm−3 of phosphorus dopping), crystal delineation (grain size 50×30μm) and Raman spectroscopy (stress 6.0×109dynescm−2) indicated that good quality doped silicon crystal film can be produced with this method. NMOS transistors fabricated by this technology show good performances such as high breakdown voltage (45 V), small leakage current (2 nA/μm), reasonable channel carrier mobility (140cm2V−1−1) and photosensitivity (1.5 A/W).

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Franklin, H., Proceeding of 1985 International Display Research Conference, pp.37–9 (1985).Google Scholar
2. Lee, S. H., Esener, S. C., Title, M. A. and Drabik, T., Opt. Eng., 25 (2), 250 (1986).Google Scholar
3. Tsaur, B-Y. in Energy Beam-Solid Interaction and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. and Shank, C. (Mater. Res. Soc. Symp. Proc. 35, Pittsburgh, PA 1985), p. 641.Google Scholar
4. Gat, A., Gerzburg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl. Phys. Lett., 33 (8), 775 (1978).Google Scholar
5. Maby, E., Geis, N., Lecoz, Y., Silversmith, D., Mountain, R. and Antonniadis, D., IEEE Elec. Dev. Lett., EDLs–2(10), p. 241 (1981).Google Scholar
6. Narayan, J., Young, R. T., Wood, R. F. and Christie, W. H., Appl. Phys. Lett., 33 (4), 338 (1978).Google Scholar
7. Nissim, Y. I., Gibbons, J. F., Magee, T. J. and Ormond, R., J. Appl. Phys., 52 (1), 227 (1981).Google Scholar
8. Wu, Schyi-yi, Solid State Technology, p. 71, June 1982.Google Scholar
9. Land, C. E., Thacher, P. D. and Heartling, G. H. in Electrooptic Ceramics, edited by Wolfe, R. (Academic Press, New York, 1974), pp. 137233.Google Scholar
10. Lin, T. H., Burgener, M. L., Esener, S. C. and Lee, S. H., in Beam-Solid Interactions and Transient Processes, ed. by Picraus, S. C., Thompson, M. O., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, 1986) p. 123.Google Scholar
11. Baeri, P., Campisano, S. U., Foti, G. and Rimini, E., Appl. Phys. Lett., 33 (2), 137–9 (1978).CrossRefGoogle Scholar
12. Born, M. and Wolf, E., Principles of Optics, 5th ed. (Pergamon Press, 1975), p. 61.Google Scholar
13. Sze, S. M. and Irvin, J. C., Solid State Electronics, 11, 599 (1968).CrossRefGoogle Scholar
14. Kamins, T. I., Solid State Electronics, 15, 789 (1972).Google Scholar
15. Sze, S. M., Physics of Semicondutor Devices, 2nd ed. (Wiley, New York, 1981), pp. 743751.Google Scholar
16. Reedy, R. E. and Lee, S. H., Appl. Phys. Lett., 4 (1), 19 (1984).Google Scholar