Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:16:12.427Z Has data issue: false hasContentIssue false

NiSi Nanowires and Nanobridges Formed by Metal-Induced Growth

Published online by Cambridge University Press:  26 February 2011

Joondong Kim
Affiliation:
jk74@buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, Bonner 207, Buffalo, NY, 14228, United States, (716)645-3115 Ext. 1233
Dongho Lee
Affiliation:
dlee7@buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, United States
Wayne A Anderson
Affiliation:
waanders@eng.buffalo.edu, University at Buffalo, State University of New York, Electrical Engineering, United States
Get access

Abstract

Nickel monosilicide (NiSi) nanowires (NWs) were fabricated by metal-induced growth at 575 °C. The solid-state reaction of Ni and Si provides linear grown NWs. The parallel grown NW forms a nanobridge (NB) across a trench, patterned with a simple optical lithography and metal lift-off method. The Ni pads gave a good Ohmic contact without affecting the I-V transport characteristics through a NB. The metallic NB, 2.73 µm in length and 50 nm in diameter, gave a low resistance of 148 . The self-assembled nanobridge can be applied to form nanocontacts at relatively low temperatures. The MIG NB is a promising 1 dimensional nanoscale building block to satisfy the need of ‘self and direct’ assembled ‘bottom-up’ fabrication concepts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alaca, B. Erdem, Sehitoglu, Huseyin, and Saif, Taher, Appl. Phys. Lett. 84, 4669 (2004).Google Scholar
[2] Thong, J. T. L, Oon, C.H., Yeadon, M., and Zhang, W.D., Appl. Phys. Lett. 81, 4823 (2002).Google Scholar
[3] Decker, C. A., Solanki, R., Freeouf, J. L., Carruthers, J. R., and Evans, D. R., Appl. Phys.Lett. 84, 1389 (2004).Google Scholar
[4] Yakushiji, K., Mitani, S., Takanashi, K., Takahashi, S., Maekawa, S., Imamura, H., and Fujimori, H., Appl. Phys. Lett. 78, 515 (2001).Google Scholar
[5] Islam, M Saif, Sharma, S, kamins, T I, and Williams, R Stanley. Nanotechnology. 15, L5 (2004).Google Scholar
[6] Nastaushev, Y. V., Cavrilova, T., Kachanova, M., Nenasheva, L., Kolosanov, V., Naumova, O.V., Popov, V.P., and Assev, , Mater. Sci. Eng. C 19, 189 (2002).Google Scholar
[7] Kim, Gi Bum, Yoo, Do-Joon, Baik, Hong Koo, Myoung, Jae-Min, Lee, Sung Man, Oh, Sang Ho, Park, Chan Gyung, J.Vac. Sci.Technol. B 21 (2003) 319.Google Scholar
[8] Kim, Joondong, and Anderson, Wayne A., Thin Solid Films 483, 60 (2005).Google Scholar
[9] Kim, Joondong, Anderson, Wayne A., Song, Young-Joo, and Kim, Gi Bum, Appl. Phys. Lett. 86, 253101 (2005).Google Scholar
[10] Lee, Kyung Sun, Mo, Young Hwan, Nahm, Kee Suk, Shim, Hyun Wook, Suh, Eun Kyung, Kim, Jae Ryoung, Kim, Ju Jin, Chem. Phys. Lett. 384 (2004) 215.Google Scholar
[11] Wu, Y., Xiang, J., Yang, C., Lu, W., and Lieber, C. M., Nature 430, 61 (2004).Google Scholar
[12] Lew, Kok-Keong, Pan, Ling, Bogart, Timothy E., Dilts, Sarah M., Dickey, Elizabeth C., Redwing, Joan M., Wang, Yanfeng, Cabassi, Marco, and Mayer, Theresa S., Appl. Phys. Lett 85, 3101 (2004).Google Scholar
[13] Hwang, J. S., Ahn, D., Hong, S. H., Kim, H. K., Hwang, S. W., Jeon, B.-H., and Choi, J.-H. Appl. Phys. Lett 85 1636 (2004).Google Scholar
[14] Meyer, B. a, Gottlieb, U., Laborde, O., Yang, Hongshun, Lasjaunias, J.C., and Sulpice, A., Madar, R.. Journal of Alloys and Compounds 262 235 (1997)Google Scholar
[15] Eberhardt, J and Kasper, E Semicond. Sci. Technol. 16 L47 (2001)Google Scholar