Skip to main content Accessibility help

New Thermoelectric Arsenides and Antimonides for High Temperature Applications

  • Hong Xu (a1), Navid Soheilnia (a2), Huqin Zhang (a3), Paola N. Alboni (a4), Terry M. Tritt (a5) and Holger Kleinke (a6)...


Three different materials crystallizing in the cubic Ir3Ge7 type are under investigation in our group, namely Mo3(Sb,Te)7, Nb3(Sb,Te)7, and Re3(E,As)7 (with E = Si, Ge, Sn). Our electronic structure calculations reveal a band gap to occur at 55 valence-electrons in all three cases, namely Mo3Sb5Te2, Nb3Sb2Te5, and Re3 EAs6. Cubic holes exist in these structures that may be filled with small cations such as 3d transition metal atoms. Ni0.06Mo3Sb5.4Te1.6 is a degenerate p-type semiconductor that reaches ZT = 0.96 at 750°C, while Re3Ge0.6As6.4 is a degenerate n- type semiconductor with slightly lower ZT values. Preliminary results indicate that the Re3(Sn,As)7 system may be the most promising of the rhenium arsenides.



Hide All
1. Yang, J., Caillat, T., Mat. Res. Bull. 31, 224229 (2006).
2. Ioffe, A. F, Physics of Semiconductors, Academic Press, New York City, NY, 1960.
3. Rowe, D. M, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, 1995.
4. Tritt, T. M, Science 283, 804805 (1999).
5. DiSalvo, F. J, Science 285, 703706 (1999).
6. Chung, D.-Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G, Science 287, 10241027 (2000).
7. Sales, B. C., Mandrus, D., Williams, R. K, Science 272, 13251328 (1996).
8. Brown, S. R, Kauzlarich, S. M, Gascoin, F., Snyder, G. J, Chem. Mater. 18, 18731877 (2006).
9. Hsu, K. F, Loo, S., Guo, F., Chen, W., Dyck, J. S, Uher, C., Hogan, T., Polychroniadis, E. K, Kanatzidis, M. G, Science 303, 818821 (2004).
10. Dashjav, E., Szczepenowska, A., Kleinke, H., J. Mater. Chem. 12, 345349 (2002).
11. Brown, A., Nature 206, 502503 (1965).
12. Hässermann, U., Elding-Pontén, M., Svensson, C., Lidin, S., Chem. Eur. J. 4, 10071015 (1998).
13. Gascoin, F., Rasmussen, J., Snyder, G. J, J. Alloys Compd. 427, 324329 (2007).
14. Soheilnia, N., Dashjav, E., Kleinke, H., Can. J. Chem. 81, 11571163 (2003).
15. Zhang, H., He, J., Zhang, B., Su, Z., Tritt, T. M, Soheilnia, N., Kleinke, H., J. Electron. Mater. 36, 727731 (2007).
16. Wang, S., Snyder, G. J, Caillat, T., Proc. Intern. Conf. Thermoelectr. 21, 170172 (2002).
17. Soheilnia, N., Giraldi, J., Assoud, A., Zhang, H., Tritt, T. M, Kleinke, H., J. Alloys Compd., in press (2007).
18. Larson, A. C, Dreele, R. B. von, Los Alamos National Laboratory: Los Alamos, NM, 2000.
19. Andersen, O. K, Phys. Rev. B 12, 30603083 (1975).
20. Skriver, H. L, The LMTO Method, Springer, Berlin, Germany, 1984.
21. Hedin, L., Lundqvist, B. I, J. Phys. C 4, 20642083 (1971).
22. Blöchl, P. E., Jepsen, O., Andersen, O. K, Phys. Rev. B 49, 1622316233 (1994).
23. Soheilnia, N., Xu, H., Zhang, H., Tritt, T. M, Swainson, I., Kleinke, H., Chem. Mater. 19, 40634068 (2007).
24. Furuseth, S., Kjekshus, A., Acta Chem Scand. 20, 245250 (1966).
25. Jensen, P., Kjekshus, A., J. Less-Comm. Met. 13, 357359 (1967).
26. Jensen, P., Kjekshus, A., Skansen, T., J. Less-Common Met. 17, 455458 (1969).


New Thermoelectric Arsenides and Antimonides for High Temperature Applications

  • Hong Xu (a1), Navid Soheilnia (a2), Huqin Zhang (a3), Paola N. Alboni (a4), Terry M. Tritt (a5) and Holger Kleinke (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed