Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T00:25:10.506Z Has data issue: false hasContentIssue false

New Synthetic Approaches to Self-Assembled Chromophoric Multilayers as Second-Order Nonlinear Optical Materials

Published online by Cambridge University Press:  21 February 2011

Wenbin Lin
Affiliation:
The Materials Research Center, Northwestern University, Evanston, IL 60208 USA
Tobin J. Marks
Affiliation:
The Materials Research Center, Northwestern University, Evanston, IL 60208 USA
Shlomo Yitzchaik
Affiliation:
The Materials Research Center, Northwestern University, Evanston, IL 60208 USA
Weiping Lin
Affiliation:
Department of Chemistry, Department of Physics
George K. Wong
Affiliation:
Department of Chemistry, Department of Physics
Get access

Abstract

This contribution describes the synthesis and properties of NLO-active self-assembled chromophoric multilayers. The stilbazolium self-assembled multilayers were prepared by new topotactic approaches based on siloxane self-assembly technology. X-ray photoelectron spectroscopy (XPS), advancing aqueous contact angle (θa) measurements, transmission optical spectroscopy, polarized second harmonic generation (SHG), and specular X-ray rellectivity (XRR) show that the resulting self-assembled chromophoric superlattices have very high structural regularity and very large second-order nonlinear optical susceptibility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burland, D.M., Optical Nonlinearities in Chemistry, Chem. Rev., 94 (1994) and references therein.Google Scholar
2. Marks, T.J., Ratner, M.A., Angew. Chem. Int. Ed. Engl., 34, 155 (1995) and references therein.Google Scholar
3. Burland, D.M., Miller, R.D., Chem. Rev., 94, 31 (1994).Google Scholar
4. Ashwell, G.J., Jackson, P.D., Crossland, W.A., Nature, 368, 438 (1994). T.L. Penner, H.R. Matschmann, N.J. Armstrong, Ezenyilimba, D.J. Williams, Nature, 367, 49 (1994).Google Scholar
5. Ulman, A., An Introduction to Ultrathin Organic Films, (Academic Press: New York, 1991), Part 3. S.R. Wasserman, Y.-T. Tao, G.M. Whitesides, Langmuir, 5, 1074 (1989). M. Pomerantz, A. Segmuller, L. Netzer, J. Sagiv, Thin Solid Films, 132, 153 (1985). G. Cao, H.-G. Hong, T.E. Mallouk, Acct. Chem. Res., 25, 420 (1992).Google Scholar
6. Li, D., Ratner, M.A., Marks, T.J., Zhang, C., Yang, J., Wong, G.K., J. Am. Chem. Soc., 112, 7389 (1990). S. Yitzchaik, S.B. Roscoe, A.K. Kakkar, D.S. Allan, T.J. Marks, Z, Xu, T. Zhang, W. Lin, G.K. Wong, J. Phys. Chem., 97, 6958 (1993). S.B. Roscoe, S. Yitzchaik, A.K. Kakkar, T.J. Marks, W. Lin, G.K. Wong, Langmuir, 10, 1337 (1994).Google Scholar
7. Katz, H.E., Scheller, G., Putvinski, T.M., Schilling, M.L., Wilson, W.L., Chidsey, C.E.D., Science, 254, 1485 (1991). H.E. Katz, W.L. Wilson, G. Scheller, J. Am. Chem. Soc.. 116, 6636 (1994).Google Scholar
8. Shih, M.C., Peng, J., Huang, K., Dutta, P., Langmuir, 9, 776 (1993).Google Scholar
9. Roscoe, S.R., Yitzchaik, S., Kakkar, A.K., Marks, T.J., Lin, W., Wong, G.K., Langmuir, 10, 1337 (1994).Google Scholar
10. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, (Perkin Elmer: Eden Praire, MN, 1992).Google Scholar
11. βcalc vec = 946 × 10-30 cm5 esu-1o = 1064 nm) by the semi-empirical ZINDO/SOS formalism.Google Scholar
12. Lundquist, P.M., Yitzchaik, S., Zhang, T., Kanis, D.R., Ratner, M.A., Marks, T.J., Wong, G.K., Appl. Phys. Lett., 64, 2194 (1994).Google Scholar