Skip to main content Accessibility help

New Organometallic Selenium Reagents for Low Temperature Omcvd of Znse

  • M. Danek (a1) (a2), J-S. Huh (a1) (a3), K. F. Jensen (a1) (a4), C. Gordon (a5) and W. P. Kosar (a5)...


ZnSe epitaxial films have been grown on (100) GaAs by reduced pressure organometallic chemical vapor deposition (OMCVD) from tertiary-butyl(allyl)selenium (tBASe) and dimethylzinc triethylamine adduct (DMZnNEt3) at temperatures of 325-450ΰC. Good surface morphology, film crystallinity and interface quality have been found with scanning electron microscopy (SEM), double crystal X-ray diffraction (DCD) and Rutherford back scattering spectroscopy (RBS). Secondary ion mass spectrometry (SIMS) shows negligible carbon concentration (below 5x1017atoms/cm3). Low temperature photoluminescence (PL) exhibits a strong near band-edge emission with a dominant donor-bound peak. Gas-phase pyrolysis of tBASe has been probed at reduced pressure in a molecular beam mass spectrometric system in hydrogen and deuterium carrier gases. The precursor decomposes above 200ΰC by β-hydrogen elimination and by homolysis of the Se-C bonds. High isobutene vs. isobutane ratios (50-100) indicate a predominance of β-hydrogen elimination over homolysis at temperatures below 400ΰC. Diallylselenium is present in the gasphase in low concentrations at temperatures of 200-350ΰC. Diallylselenium, methylallylselenium and dimethyl-selenium have been observed as minor by-products during pyrolysis of co-dosed tBASe and DMZnNEt3. The effect of the retro-ene decomposition pathway of allylselenium reagents on carbon incorporation into ZnSe films is further probed by growth experiments with in situ generated 2-methylpropaneselenal.



Hide All
[1] Giapis, K. P., Lu, D. C., Jensen, K. F., Appl. Phys. Lett. 54, 353 (1989).
[2] Jones, A. C., J. Cryst. Growth 129, 728 (1993).
[3] Giapis, K. P., Jensen, K. F., Potts, J. E., Pachuta, S. J., J. Electron. Mater. 19, 453 (1990).
[4] Patnaik, S., Jensen, K. F., Giapis, K. P., J. Cryst. Growth 107, 390 (1991).
[5] Patnaik, S., Ho, K-L., Jensen, K. F., Gordon, D. C., Kirss, R. U., Brown, D. W., Chem. Mater. 5, 305 (1993).
[6] Huh, J-S., PhD thesis, MIT, 1993.
[7] Stutius, W., J. Electron. Mater. 10, 95 (1981).
[8] Lee, P. W., Omstead, T. R., McKenna, D. R., Jensen, K. F., J. Cryst. Growth 85, 165 (1987).
[9] Mitsuhashi, H., Mitsuishi, I., Kukimoto, H., J. Cryst. Growth 77, 219 (1986).
[10] Huh, J.S., Patnaik, S., and Jensen, K.F., J. Electron. Mater. 22, 509 (1993).
[11] Benson, S. W, Chem Rev. 78, 23 (1978); J. Chem. Soc. Faraday Trans. 2 83, 791 (1987).
[12] Kuhn, W., Naumov, A., Stanzl, H., Bauer, S., Wolf, K., Wagner, H. P., Gebhardt, G., Pohl, U. W., Krost, A., Richter, W., Dumichen, U., Thiele, K. H., J. Cryst. Growth 123, 605 (1992).
[13] Danek, M., Huh, J-S., Jensen, K. F., Gordon, D. C., Kosar, W. P., in preparation for publication in Chem. Mater.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed