Skip to main content Accessibility help
×
Home

New Materials Optimization Process in Tomato

  • Luz E. Marín Vaca (a1), Oscar G. Villegas Torres (a2), Sergio Luna Lugo (a2), Miguel Aguilar Cortes (a1), Nadia Lara Ruiz (a1) and Martha Lilia Domínguez Patiño (a3)...

Abstract

The protected agriculture has gained great importance worldwide in the past 10 years. For example in the case of production in greenhouse conditions, that records an annual growth of 20%.

An important aspect greenhouse production is the medium used for growth of the plant, which may be an organic or inorganic substrate.

One of the advantages of the use of regional substrates is the availability and lower cost, and further organic in gives the tendency to manage sustainable production systems.

The organic substrates alone or in mixtures improve conditions for plant growth in terms of physical, chemical and biological as a perspective.

A wide variety of materials that can be used as agricultural substrates, but there are criteria to be considered for its election as: plant requirements, conforming as possible to the ideal characteristics of a substrate and effect on the environment.

Overall, we can summarize that a substrate for growing plants is any material that can provide attachment, oxygen and enough water for optimal development of the same, or in nutrient case requirements can be covered with a single material or combination with others.

In this paper the tomato crop is presented comparing two production systems to determine the yield and fruit quality under plastic cover, high densities of drip irrigation and using the tezontle as substrate, as this provides good drainage, almost no contribution nutrients and slightly neutral PH. And also allows us to transplant to a larger pot without disturbing the root and provides the necessary aeration.

Copyright

References

Hide All
Hahn, F, Hernandez, G, Hernandez, J, Perez, C, and Vargas, JM. Optimization of roselle drying time and drying quality, Can Biosyst Eng 2011; 53: 31–8.
Karabacak, R, Atalay, O. Comparison of drying characteristics of tomatoes with heat pump dehumidifier system, solar assisted system and natural drying. J Food Agric Environ 2010; 8(2):190–4.
Workneh, TS, Raghavan, V, Gariepy, Y. Microwave assisted hot air ventilation drying of tomato slices Paper presented at the Int. Conf. on Food Eng. And Biotechnology, Singapore: IACSIT Press 2011.
Ruiz, A, Cuadros, F, Lopez-Rodriguez, F. Characterization of industrial tomato by products from infrared drying process. Food Bioprod Process 2009; 87: 282–91.
Ruiz Celma, A, Cuadros, F, Lopez-Rodriguez, F. Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioprod Process 2012; 90: 224–34.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed