Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T06:14:00.850Z Has data issue: false hasContentIssue false

New Line Model for Optimized Dislocation Dynamics Simulations

Published online by Cambridge University Press:  21 March 2011

Ronan Madec
Affiliation:
Laboratoire d'Etude des Microstructures, CNRS-ONERA, 29 Av. de la Division Leclerc, B.P. 72, 92322 Ch tillon Cedex, France.
Benoit Devincre
Affiliation:
Laboratoire d'Etude des Microstructures, CNRS-ONERA, 29 Av. de la Division Leclerc, B.P. 72, 92322 Ch tillon Cedex, France.
Ladislas P. Kubin
Affiliation:
Laboratoire d'Etude des Microstructures, CNRS-ONERA, 29 Av. de la Division Leclerc, B.P. 72, 92322 Ch tillon Cedex, France.
Get access

Abstract

A new model for the discretisation of dislocation lines is presented, which is optimised for mesoscale simulations of dislocation dynamics. By comparison with the existing edge-screw model, the present one provides a better description of the stress field close to the dislocation lines. It simplifies the modelling of dislocation reactions and accelerates computations by allowing to make use of larger time steps. An application to attractive junctions and forest hardening is briefly sketched.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kubin, L P., Canova, G., Condat, M., Devincre, B., Pontikis, V. and Br chet, Y., Solid State Phenomena, 2324, 455 (1992).Google Scholar
2. Devincre, B. and Condat, M., Acta metall. mater, 40, 2629 (1992).Google Scholar
3. Devincre, B. and Kubin, L., Mat. Sci. Eng., A234236, 8 (1997).10.1016/S0921-5093(97)00146-9Google Scholar
4. Fivel, M., Verdier, M. and Canova, G., Mat. Sci. Eng., A234236, 923 (1997).Google Scholar
5. Lemarchand, C., Devincre, B., Kubin, L. and Chaboche, J.L., MRS Symp. Proc., 538, 63 (1999).Google Scholar
6. Zbib, H. M., Rhee, M., and Hirth, J.P., Int. J. Mech. Sci. 40, 113 (1998).Google Scholar
7. Schwarz, K. W., J. Appl. Phys. 85, 108 (1999).10.1063/1.369429Google Scholar
8. Gohniem, N. M. and Sun, L. Z., Phys. Rev. B 60, 128 (1999).10.1103/PhysRevB.60.128Google Scholar
9. Devincre, B., Kubin, L. P., Lemarchand, C. and Madec, R., Mat. Sci. Eng. A, in press.Google Scholar
10. Foreman, A., Phil. Mag. 15, 1011 (1967).Google Scholar
11. Devincre, B. and Kubin, L.P., Modelling Simul. Mater. Sci. Eng. 2, 559 (1994).10.1088/0965-0393/2/3A/010Google Scholar
12. Saada, G., Acta metall. 8, 841 (1960).10.1016/0001-6160(60)90150-4Google Scholar
13. Schoeck, G. and Frydman, R., Phys. Stat. Sol. (b), 53, 661 (1972).10.1002/pssb.2220530227Google Scholar
14. Shenoy, V. B., Kukta, R. V. and Phillips, R., Phys. Rev. Lett. 84, 1491 (2000)10.1103/PhysRevLett.84.1491Google Scholar
15. Wickham, L.K., Schwarz, K. and St lken, J.S., Phys. Rev. Lett. 83, 4574 (1999).Google Scholar
16. Madec, R. Devincre, B. and Kubin, L. P., Comp. Mat. Sci., in press.Google Scholar
17. Sevillano, J. Gil, in Mughrabi, H. (Ed.), Plastic Deformation and Fracture of Materials (Materials Science and Technology, Vol. 6), VCH, D-Weinheim, p. 40 (1993).Google Scholar