Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-22T10:12:54.415Z Has data issue: false hasContentIssue false

New Ge-Sn materials with adjustable bandgaps and lattice constants

Published online by Cambridge University Press:  11 February 2011

Matthew R. Bauer
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ 85287
John Tolle
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ 85287
A. V. G. Chizmeshya
Affiliation:
Center for Solid State Science, Arizona State University, Tempe AZ 85287
S. Zollner
Affiliation:
Motorola Inc., MD EL622, 2100 E. Elliot Road, Tempe, AZ 85287
J. Menendez
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe AZ 85287
J. Kouvetakis
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe AZ 85287
Get access

Abstract

The synthesis and optical properties of a new class of Si-based infrared semiconductors in the Ge1-x Snx system are described. Chemical methods based on deuterium-stabilized Sn hydrides and UHV-CVD were used to prepare a wide range of metastable compositions and structures directly on silicon. These materials exhibit high thermal stability, superior crystallinity, and unique crystallographic and optical properties, such as adjustable band gaps and lattice constants. These properties are characterized by Rutherford backscattering, low-energy secondary ion mass spectrometry, high-resolution transmission electron microscopy, x-ray diffraction as well as infrared and Raman spectroscopies and spectroscopic ellipsometry. The films grow essentially strain free and display a strong compositional dependence of the band structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. He, G., Atwater, H. A., Phys. Rev. Lett. 79, 1937 (1997).Google Scholar
2. Jenkins, D. W. and Dow, J. D., Phys. Rev. B 36, 7994 (1987).Google Scholar
3. Gurdal, O., Desjardins, R., Carlsson, J. R. A., Taylor, N., Radamson, H. H., Sundgren, J.-E., Greene, J. E., J. Appl. Phys 83, 162 (1998).Google Scholar
4. Bull. Alloy Phase Diagrams 5, 266 (1984) and references therein.Google Scholar
5. Asom, M. T., Fitzgerald, E. A., Kortan, A. R., Spear, B., Kimerling, L. C., Appl. Phys. Lett. 55, 578 (1989).Google Scholar
6. Wegscheider, W., Olajos, J., Menczigar, U., Dondl, U., Abstreiter, G., J. Cryst. Growth 132, 75 (1992).Google Scholar
7. Taraci, J., Tolle, J., Kouvetakis, J., McCartney, M. R., Smith, D.J., Menendez, J., and Santana, M. A., Appl. Phys. Lett. 78, 3607 (2001).Google Scholar
8. Richter, W., “Resonant Raman Scattering in Semiconductors”, in Springer Tracts in Modern Physics, Hohler, G. Ed. Springer-Verlag: New York, Vol. 78, p 121 (1976).Google Scholar
9. Cerdeira, F., Dreyrodt, W., and Cardona, M., Solid. State Comm. 10, 591 (1972).Google Scholar
10. Vina, L., Hochst, H. and Cardona, M., Phys. Rev. B 31, 958 (1985).Google Scholar
11. Humlicek, J., Garriga, M., Alonso, M.I., and Cardona, M., J. Appl. Phys. 65, 2827 (1989).Google Scholar