Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-18T06:29:23.148Z Has data issue: false hasContentIssue false

A new family of salts for lithium Secondary batteries

Published online by Cambridge University Press:  10 February 2011

D. Baril
Affiliation:
Université de Montréal. C.P. 6128 succ. Centre-ville, Montréal, Québec, Canada. H3C 317.
S. Brranger
Affiliation:
Université de Montréal. C.P. 6128 succ. Centre-ville, Montréal, Québec, Canada. H3C 317.
N. Ravet
Affiliation:
Université de Montréal. C.P. 6128 succ. Centre-ville, Montréal, Québec, Canada. H3C 317.
C. Michot
Affiliation:
ENSEEG / I.N.P.G., 1030 rue de la Piscine 38402 Saint-Martin d'Hères, France.
M. Armand
Affiliation:
Université de Montréal. C.P. 6128 succ. Centre-ville, Montréal, Québec, Canada. H3C 317.
Get access

Abstract

A novel family of salts suitable for lithium battery application was synthesized and characterized. These salts have a large delocalized anion whose charge is spread over a single SO2 and a phenyl ring. Remarkable properties were obtained for the lithium N-(3-trifluoromethyl phenyl) trifluoromethanesulfonamide salt or LiTFPTS. The electrochemical stability window is around 4.0 V and its conductivity in solid poly(ethylene oxide) or PEO is close to the one of the lithium perchlorate salt. Calorimetric analysis also showed that LiTFPTS behaves as a plasticizer since it hinders, to a certain extent, the PEO crystallization when it is used in a solid polymer matrix. Above all, its synthesis is quite straightforward and leads to potentially inexpensive salts as the starting amines are made commercially on a large scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lascaud, S., Perrier, M., Vallée, A., Besner, S., Prud'homme, J. and Armand, M., Macromolecules. 27, 7469(1994).Google Scholar
2. Armand, M., Gorecki, W. and R. Andreani in Second InternationalS ymposium on Polymer Electrolytes edited by Scrosati, B.. Elsevier Applied Science. New-York, USA, 1990, p. 91.Google Scholar
3. Wen, S. J., Richardson, T. J., Ghantous, D. I., Striebel, K. A., Ross, P. N. and Cairns, E. J., J. Electroanal. Chem. 408, 113(1996).Google Scholar
4. Handa, M., Suzuki, M., Suzuki, J., Kanematsu, H. and Sasaki, Y., Electrochem. Solid-State Lett. 2, 60(1999).Google Scholar
5. Ue, M., Takeda, M., Takehara, M. and Mori, S., J. Electrochem. Soc. 144, 2684(1997).Google Scholar
6. Reibel, L., Bayoudh, S., Baudry, P. and Majastre, H., Electrochimica Acta. 43 1171(1998).Google Scholar
7. Barthel, J., Schmidt, M. and Gores, H. J., J. Electrochem. Soc. 145, L17 (1998).Google Scholar
8. Bartel, J., Buestrich, R., Gores, H. J., Schmidt, M. and Wühr, M., J. Electrochem. Soc. 144, 3866(1997).Google Scholar
9. Gray, F. M. in Polymer Electrolytes, series editor Connor, J. A., The Royal Society of Chemistry, Thomas Graham House. Cambridge, UK, 1997, pp. 4749.Google Scholar
10. Baril, Daniel, Ph. D. Thesis, Institut National Polytechnique de Grenoble (1993). pp. 2842.Google Scholar
11. ref. [91, pp.113119.Google Scholar
12. ref. 191, p. 12.Google Scholar