Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T12:45:11.175Z Has data issue: false hasContentIssue false

New Chemical Routes to Metal Nitrides

Published online by Cambridge University Press:  28 February 2011

Wayne L. Gladfelter
Affiliation:
Department of Chemistry,University of Minnesota,Minneapolis,Minnesota
Jen-Wei Hwang
Affiliation:
Department of Chemistry,University of Minnesota,Minneapolis,Minnesota
John F. Evans
Affiliation:
Department of Chemistry,University of Minnesota,Minneapolis,Minnesota
Scott A. Hanson
Affiliation:
Department of Chemistry,University of Minnesota,Minneapolis,Minnesota
Klavs F. Jensen
Affiliation:
55455 and Department of Chemical Engineering,Massachusetts Institute of Technology 66–250,Cambridge,MA 02139
Kwok-Lun Ho
Affiliation:
55455 and Department of Chemical Engineering,Massachusetts Institute of Technology 66–250,Cambridge,MA 02139
Get access

Abstract

After a brief introduction on how the differing properties of H2O and NH3 may effect the strategies used to synthesize metal nitrides, an overview of our use of azides to produce aluminum nitride thin films will be presented. The effect of changing the nitrogen source to one which contains at least one N - C bond is to increase dramatically the carbon content of the films. Replacing the alkyl groups attached to the aluminum with hydride ligands removes the final carbon source and forms what appears to be a promising new class of precursors. This is demonstrated by the study of the reaction of Me3NGaH3 with NH3 to produce the novel trimer, [H2GaNH2]3 . This fully characterized molecule converts at 150°C into gallium nitride. Surprisingly, it yields GaN having the sphalerite structure instead of the known wurtzite phase. A discussion of the reasons for this unusual route to a new crystalline phase of GaN is included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greenwood, N. N. and Earnshaw, A., “Chemistry of the Elements”, Pergamon: New York, p.479 (1984).Google Scholar
2. Brown, G. M. and Maya, L., J. Am. Ceram. Soc., 71, 78 (1988).Google Scholar
3. Interrante, L. V., Sigel, G. A., Garbauskas, M., Hejna, C., and Slack, G. A., Inorg. Chem., 28, 252 (1989).Google Scholar
4. Interrante, L. V., Carpenter, L. E., Whitmarsh, C., Lee, W., and Slack, G. A., Mater. Res. Soc. Symp. Proc. 73, 986 (1986).Google Scholar
5. Seyferth, D., Wiseman, G. H., and Prud'homme, C., J. Am. Ceram. Soc., 66, C13 (1983).Google Scholar
6. Youngdahl, K. A., Laine, R. M., Kennish, R. A., Cronin, T. R., and Balavoine, G. G. A., Mater. Res. Soc. Symp. Proc. 121, 489 (1988).Google Scholar
7. Baker, R. T., Bolt, J. D., Reddy, G. S., Roe, D. C., Staley, R. H., Tebbe, F. N., Vega, A. J., Mater. Res. Soc. Symp. Proc. 121, 471 (1988).Google Scholar
8. Gladfelter, W. L., Boyd, D. C., Hwang, J.-W., Haasch, R. T., Evans, J. F., Ho, K.-L., and Jensen, K. F., Mater. Res. Soc. Symp. Proc. 131, 447 (1989).Google Scholar
9. Boyd, D. C., Haasch, R. T., Mantell, D. R., Schulze, R. K., Evans, J. F., and Gladfelter, W. L., Chem. Mater., 1, 119 (1989).Google Scholar
10. Ho, K. -L., Jensen, K. F., Hanson, S. A., Evans, J. F., Boyd, D. C., and Gladfelter, W. L., Mater. Res. Soc. Symp. Proc., in press.Google Scholar
11. Kouvetakis, J. and Beach, D. B., Chem. Mater., 1, 476 (1989).Google Scholar
12. Davidson, N. and Brown, H. C., J. Am. Chem. Soc., 64, 316 (1942).Google Scholar
13. Atwood, J. L. and Stucky, G. D., J. Am. Chem. Soc., 92, 285 (1970).Google Scholar
14. Gosling, K., Smith, J. D., and Wharmby, D. H. W., J. Chem. Soc. (A), 1738 (1969).Google Scholar
15. Cowley, A. H., Benac, B. L., Ekerdt, J. G., Jones, R. A., Kidd, K. B., Lee, J. Y., and Miller, J. E., J. Am. Chem. Soc. 110, 6248 (1988).Google Scholar
16. Narula, C. K., Schaeffer, R., and Paine, R. T., J. Am. Chem. Soc., 109, 5556 (1987).Google Scholar
17. Wiberg, E. and Amberger, E., “Hydrides of the Elements of the Main Groups IIV”, Elsevier: Amsterdam (1971).Google Scholar
18. Maya, L., Adv. Ceram. Mater., 1, 150 (1986).Google Scholar
19. Ochi, A., Bowen, H. K., and Rhine, W. E., Mater. Res. Soc. Symp. Proc. 121, 663 (1988)Google Scholar
20. Gladfelter, W. L, Boyd, D. C., and Jensen, K. F., Chem. Mater., 1, 339 (1989).Google Scholar
21. Ilegems, M., Dingle, R., and Logan, R. A., J. Appl. Phys., 43, 3797 (1972).Google Scholar
22. Schoonmaker, R. C. and Burton, C. E., Inorg. Synth. 7, 16 (1963).Google Scholar
23. Johnson, W. C., Parsons, J. B., and , M. C. Crew, J. Phys. Chem., 36, 2651 (1932).Google Scholar
24. Juza, R. and Hahn, H. Z., Anorg. Allgem. Chem., 244, 111 (1940).Google Scholar
25. Mizuta, M., Fujieda, S., Matsumoto, Y., and Kawamura, T., Jap. J. Appl. Phys., 25, L945 (1986).Google Scholar
26. Powell, R. C., Tomasch, G. A., Kim, Y. W., Thornton, J. A., and Greene, J. E., Abstracts of Papers, Fall Meeting, Boston, MA; Materials Research Society: Pittsburgh, PA, 1989; F7.2.Google Scholar
27. Paisley, M. J., Sitar, Z., Posthill, J. B., and Davis, R. F., J. Vac. Sci. Technol. , A7, 701 (1989).Google Scholar
28. Storr, A., J. Chem. Soc. A, 2605 (1968).Google Scholar
29. Shriver, D. F. and Shirk, A. E., Inorg. Synth., 17, 42 (1977).Google Scholar
30. Elem., Anal., Calcd., : Ga, 79.45; N, 15.96; H, 4.59; C, 0.00. Found: Ga, 79.70; N, 15.71; H, 4.46; C, 0.08 (Analitische Laboratorien in Engelskirchen, West Germany).Google Scholar
31. Corfield, P. W. R. and Shore, S. G., J. Am. Chem. Soc., 95, 1480 (1973).Google Scholar
32. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, Card #2 – 1078.Google Scholar
33. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, Card #32 – 397.Google Scholar