Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T02:26:02.953Z Has data issue: false hasContentIssue false

A New Catalytic Method for Producing Preceramic Polysilazanes

Published online by Cambridge University Press:  28 February 2011

Yigal D. Blum
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
Richard M. Laine
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
Kenneth B. Schwartz
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
David J. Rowcliffe
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
Robert C. Bening
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
David B. Cotts
Affiliation:
Contribution from the Organometallic Chemistry and the Ceramics Programs and the Polymer Sciences Department, SRI International, Menlo Park, CA 94025
Get access

Abstract

A transition metal (e.g., Ru3 (CO)12, Pt/C) catalyzed process for Si-N bond formation is discussed that provides a new route to mono-, oligo-, and polysilazanes. The catalysts function by activating Si-H bonds in the pres-ence of ammonia. Polymeric silazanes can also be produced from oligomers in the presence of ammonia at low temperatures. This method allows us to control or modify the composition of the polysilazane during or after the polymeriza-tion. A variety of polysilazanes were prepared and converted to Si3 N4 with ceramic yields ranging from 55%-85%. By varying the monomers and reaction conditions, we can control the nitrogen and carbon content in the preceramic polymers, which enables us to obtain ceramic products that are primarily Si3N4and simultaneously minimizes the coproduction of SiC and C.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chantrell, P. G. and Popper, P., Special Ceramics, Popper, E. P., Ed.; New York: Academic (1964), pp. 87103.Google Scholar
[2] Walker, B. E. Jr., Rice, R. W., Becker, P. F., Bender, B. A., and Coblenz, W. S., Am. Ceram. Soc. Bull. (1983) 62, 916.Google Scholar
[3] Rice, R. W., Am. Ceram. Soc. Bull. (1983) 62, 89. Google Scholar
[4] Mukherjee, a. S. P., J. Cryst. Solids (1980) 42, 477. b. K. S. Mazdigazni, Ceram. Int. (1982) 8, 42.CrossRefGoogle Scholar
[5] Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. (1984) 14, 297.CrossRefGoogle Scholar
[6] Schwartz, K. B., Rowcliffe, D. J., Blum, Y. D., and Lamne, R. M., in this publication.Google Scholar
[7] Stock, a. A. and Somieski, K., Ber. Dtsch. Chem. Ges. 1921) 54, 740758. b. S. D. Brewer and C. P. Haber, J. Am. Chem. Soc. (1948) 70, 361. c. R. C. Osthoff and S. W. Kantor, Inorg. Syn. (1957) 5, 61.CrossRefGoogle Scholar
[8] Kruger, a. R. and Rochow, E. G., J. Poly. Sci. A (1964) 2, 179. b. G. Redl and.E. G. Rochow, Angew. Chem. (1964) 76, 650 and references therein.Google Scholar
[9] Andrianov, K. A., Israilov, B. A., Kononov, A. M., and Kotrelev, G. V., J. Organomet. Chem., (1965) 3, 129.CrossRefGoogle Scholar
[10] W.Verbeek, a., U.S. Patent 3,853,567 (December 1974). b. G. Winter, W. Verbeek, and M. Mansmann, U.S. Patent 3,892,583 (July 1975). c. B. G. Penn, F. E. Ledbetter III, J. M. Clemons, and J. G. Daniels, J. App. Poly. Sci. (1982) 27, 3751. See also related work in reference 11.Google Scholar
[11] Wells, R. R., Markle, R. A., and Mukherjee, S. P., Am. Ceram. Soc. Bull., (1983) 62, 904.Google Scholar
[12] Fink, W., Neth. Pat. Application 6, 507, 996.Google Scholar
[13] Seyferth, D. and Wiseman, G. H., U. S. Patent 4,482,669 (1984).Google Scholar
[14] Seyferth, D. and Wiseman, G. H., in Ultrastructure Processin og Ceramics, Glasses and Composites, Hench, L. L. and Ulrich, D. R., Eds. (1984), pp. 265–271).Google Scholar
[15] Zoeckler, M. T. and Lamne, R. M., J. Org. Chem., (1983) 48, 2539.CrossRefGoogle Scholar
[16] Blum, Y. D. and Lamne, R. M., paper submitted to Organometallics.Google Scholar
[17] Colleman, J. P. and Hegedus, L. S., Principles and Applications of Organotransition Metal Chemistry, University Science Books, (1980), pp. 384401.Google Scholar
[18] Sommer, L. H. and Citron, J. D., J. Org. Chem., (1967) 32, 2470.CrossRefGoogle Scholar
[19] Lamne, R. M. and Blum, Y., U.S. Patent Application No. 06/727,414 (patent has been allowed).Google Scholar
[20] Lamne, R. M. and Blum, Y., U.S. Patent Application submitted March 1, 1986.Google Scholar