Skip to main content Accessibility help

Neutron Detection Signatures at Zero Bias in Novel Semiconducting Boron Carbide/Pyridine Polymers

  • Elena Echeverría (a1), Robinson James (a2), Frank L. Pasquale (a2), Juan A. Colón Santana (a3), M. Sky Driver (a2), A. Enders (a1), Jeffry A. Kelber (a2) and P.A. Dowben (a1)...


Novel and more conventional boron carbides were combined with n-type silicon to make heterojunction diodes, with neutron capture signal at zero applied bias. The boron carbides were based on the cross linking of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2-B10C2H12), and cross linking based on the combination of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) and pyridine. In the latter devices, pyridine concentration was varied; samples with a closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) to pyridine ratio of 1:1 (BC:Py1) and 1:3 (BC:Py3). The result is a nonvolatile robust p-type semiconductor of boron carbide (B10C2Hx):(C5NHx)y. The I(V) curves for the resulting heterojunction diodes exhibit strong rectification where the normalized reverse bias leakage currents are largely unperturbed with increasing pyridine inclusion. The devices are largely gamma insensitive and yet neutron voltaic properties of these boron carbides is demonstrated. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the characteristic signatures of complete charge collection from boron neutron capture generated electron-hole pair production. These results, nonetheless, suggest that modifications to boron carbide may result in better neutron voltaic materials with linking groups chosen from family of aromatic compounds that stretch between borazine (B3N3H6) and benzene that point the way to a whole family of future studies that may ultimately lead to boron carbides better suited to low power and low flux neutron detection.



Hide All
1. Caruso, A.N., J.Phys. Condens. Matter. 22 (2010) 132. doi: 10.1088/0953-8984/22/44/443201.
2. Caruso, A.N., Billa, R.B., Balaz, S., Brand, J.I., Dowben, P.A., J.Phys.Condens. Matter. 16 (2004) L139L146. doi: 10.1088/0953-8984/16/10/L04.
3. Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I., Dowben, P.A., Claassen, J.P., Appl. Phys. Lett. 80 (2002) 36443646. doi: 10.1063/1.1477942.
4. Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I, Claassen, J.P., Boag, N.M., Dowben, P.A., Proc. SPIE 4785 (2002) 226233. doi: 10.1117/12.453923.
5. Adenwalla, S., Billa, R., Brand, J.I., Day, E., Diaz, M.J., Harken, A., McMullen-Gunn, A., Padmanabhan, R., Robertson, B.W., Proc. SPIE 5199 (2004) 7074. doi: 10.1117/12.506646.
6. Osberg, K., Schemm, N., Balkir, S., Brand, J.I., Hallbeck, M.S, Dowben, P.A., Hoffman, M.W., IEEE Sens. J. 6 (2006) 15311538. doi: 10.1109/JSEN.2006.883905.
7. Osberg, K., Schemm, N., Balkir, S., Brand, J.I, Hallbeck, M.S., Dowben, P.A., IEEE Int. Symp. Circ. S (2006) 11791182. doi: 10.1109/ISCAS.2006.1692801.
8. Caruso, A.N., Dowben, P.A., Balkir, S., Schemm, N., Osberg, K., Fairchild, R.W., Flores, O.B., Balaz, S., Harken, A.D., Robertson, B.W., Brand, J.I., Mater. Sci. Eng. 135 (2006) 129133. doi: 10.1016/j.mseb.2006.08.049.
9. Day, E., Diaz, M.J., Adenwalla, S., J. Phys. D: Appl. Phys. 39 (2006) 29202924. doi: 10.1088/0022 3727/39/14/007.
10. Hong, N., Mullins, J., Foreman, K., Adenwalla, S., J. Phys. D: Appl. Phys. 43 (2010) 275101. doi: 10.1088/0022-3727/43/27/275101.
11. Simeone, D., Mallet, C., Dubuisson, P., Baldinozzi, G., Gervais, C, Maquet, J., J. Nuclear Materials 277 (2000) 110. doi: 10.1016/S0022-3115(99)00149-X.
12. Emin, D., Journal of Solid State Chemistry 179 (2006) 27912798. doi: 10.1016/j.jssc.2006.01.014.
13. Carrard, M., Emin, D., and Zuppiroli, L., Phys. Rev. 51 (1995) 1127011274. doi: 10.1103/PhysRevB.51.11270.
14. Caruso, A. N., Brand, J. I., Dowben, P.A., Boron carbide particle detectors, United States Patent 7,368,794, issued May 6, 2008.
15. Pasquale, F. L., Li, Y., Du, J.C., Kelber, J.A., J.Phys. Cond. Matter 25 (2013) 105801. doi: 10.1088/0953-8984/25/10/105801.
16. Pasquale, F. L., James, R., Welch, R., Echeverria, E., Dowben, P. A., Kelber, J. A., ECS Transactions 53 (2013) 303310. doi: 10.1149/05301.0303ecst.
17. Pasquale, F.L., Liu, J., Dowben, P.A., Kelber, J.A., Materials Chemistry And Physics 133 (2012) 901906. doi: 10.1016/j.matchemphys.2012.01.114.
18. Valente, Frank A. and Zagor, Herbert Ivan, Phys. Rev. 69 (1946) 55. doi: 10.1103/PhysRev.69.55.
19. Bartholomew, G. A. and Campion, P. J., Canadian Journal of Physics 35 (1957) 1347. doi: 10.1139/p57-147.
20. Meissner, J., Schatz, H., Herndl, H., Wiescher, M., Beer, H., Käppler, F., Phys. Rev. C 53 (1996) 977. doi: 10.1103/PhysRevC.53.977.
21. Jurney, E. T., Starner, J. W., Lynn, J. E., Raman, S., Phys. Rev. C 56 (1997) 118. doi: 10.1103/PhysRevC.56.118.
22. Zagor, H. I., Valente, F. A., Physical Review 67 (1945) 133.
23. James, R.; Pasquale, F.L., Kelber, J.A., Journal of Physics: Condensed Matter 25 (2013) 355004. doi:10.1088/0953-8984/25/35/355004.
24. Echeverria, E., Pasquale, F.L., Colón Santana, J.A., Zhang, L., James, R., Sokolov, A., Kelber, J.A., and Dowben, P.A., Mat. Lett. 110 (2013) 2023. doi: 10.1016/j.matlet.2013.08.009.
25. Echeverría, E., James, R., Chiluwal, U., Pasquale, F. L., Colón Santana, J. A., Gapfizi, R., Tae, J.-D., Driver, M. S., Enders, A., Kelber, J. A. and Dowben, P.A., Applied Physics A (2014), in press; DOI 10.1007/s00339-014-8778-4.


Neutron Detection Signatures at Zero Bias in Novel Semiconducting Boron Carbide/Pyridine Polymers

  • Elena Echeverría (a1), Robinson James (a2), Frank L. Pasquale (a2), Juan A. Colón Santana (a3), M. Sky Driver (a2), A. Enders (a1), Jeffry A. Kelber (a2) and P.A. Dowben (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed