Skip to main content Accessibility help
×
Home

Nephila Clavipes Dragline Silk: Approaches to a Recombinantly Produced Silk Protein

  • Charlene M. Mello, Steven Arcidiacono, Richard Beckwitt, John Prince, Kris Senecal and David L. Kaplan...

Extract

Spider silks exhibit an unusual combination of strength and toughness that distinguishes them from other natural and synthetic fibers. Silk proteins perform a key natural function as structural fibers, to absorb impact energy from flying insects without breaking. They dissipate energy over a broad area and balance stiffness, strength and extensibility (1,2). In addition to their unusual mechanical properties and visual lustre, silks also exhibit interesting interference patterns within the electromagnetic spectrum (3), unusual viscometric patterns related to processing (4), and piezoelectric properties (3,5,6). These properties suggest they would be good candidates for high performance fiber and composite applications. However, the spider is not capable of producing sufficient quantities of proteins to enable thorough evaluation of their potential. Consequently, we are pursuing recombinant DNA techniques to clone and express adequate quantities of recombinant spider silk for these studies.

Copyright

References

Hide All
1. Gosline, J. M., DeMont, M. E. and Denny, M. W.. 1986. The structure and properties of spider silk. Endeavour 10(1): 3743.
2. Gosline, J. M., Denny, M. W. and DeMont, M. E.. 1984. Spider Silk as rubber. Nature 309: 551552.
3. Craig, C. L. and Bernard, G. D.. 1989. Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71(2): 616623.
4. Mogoshi, J., Magoshi, Y. and Nakamura, S.. 1985. Crystallization, liquid crystal, and fiber formation of silk fibroin. J. Appl. Poly. Sci. 41: 187204.
5. Ando, Y., Okano, R., Nishida, K., Miyata, S. and Fukada, E.. 1980. Piezoelectric and related properties of hydrated silk fibroin. Reports on Prog. in Polymer Physics in Japan. 23: 775778.
6. Fukada, E. 1956. On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan 12: 1301.
7. Lucas, F. Shaw, J. T. B. and Smith, S. G.. 1960. Comparative studies of fibroins I. The amino acid composition of various fibroin and its significance in relation to their crystal structure and taxonomy. J. Mol. Biol. 2: 339349
8. Tillinghast, E.K. 1984. The chemical fraction of the orb web of Argiope spiders. Insect Biochem. 14(1): 115120.
9. Tillinghast, E. K. and Kavanagh, E. J.. 1977. The alkaline proteases of Argiope and their possible role in web digestion. J. Eap. Zool. 202: 213222.
10 Townley, M. A. and Tillinghast, E. K.. 1988. Orb web recycling in Araneus cavaticus (Araneae, Araneidae) with an emphasis on the adhesive spiral component, gabamide. J. Arachnol. 16: 303319
11. Livengood, C. D. 1990. Silk. In Polymers-Fibers and Textiles A Compendium, 789797 (Kroschowitz, J. I. Ed.) Encyclopedia Reprint Series (John Wiley and Sons, New York).
12. Mello, C. M., Yeung, B., Senecal, K., Vouros, P., and Kaplan, D. L.. 1994. Initial characterization of Nephila clavipes dragline protein. In, Silk Polymers, Material Science and Biotechnology; Kaplan, D. L., Adams, W. W., Farmer, B., and Viney, C. Vol. 544 pp.6779.
13. Zemlin, J. C. 1968. A study of the mechanical behavior of spider silks. Technical Report 69-29-CM (AD 684333), U. S. Army Natick Laboratories, Natick Massachusetts, USA.
14. Xu, M. and Lewis, R. V.. 1990. Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA. 87: 71207124.
15. Himman, M. B. and Lewis, R. V.. 1992. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 267: 1932019324.
16. Lombardi, S. J. and Kaplan, D. L.. 1990. The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnthidae). J. Arachnol. 18: 297306.
17. Work, R. W. and Young, C. T.. 1987. The amino acid compositions of major and minor ampullate silks of certain orb-web building spiders (Araneae, Araneidae). J. Arachnol. 15: 6580.
18. Beckwitt, R. and Arcidiacono, S.. 1994. Sequence conservation in the c-terminal region of spider silk proteins (spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem. (in press).
19. Kerkam, K., viney, C., Kaplan, D. and Lombardi, S.. 1991. Liquid crystallinity of natural silk secretions. Nature 349: 596598.

Nephila Clavipes Dragline Silk: Approaches to a Recombinantly Produced Silk Protein

  • Charlene M. Mello, Steven Arcidiacono, Richard Beckwitt, John Prince, Kris Senecal and David L. Kaplan...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed