Skip to main content Accessibility help
×
Home

Near band-edge and excitonic behavior of GaAsN epilayers grown by Chemical Beam Epitaxy

  • J. A. H Coaquira (a1), L. Bhusal (a1) (a2), W. Zhu (a1) (a2), A. Fotkatzikis (a1) (a2), M.-A. Pinault (a1), A. P. Litvinchuk (a1) (a2) and A. Freundlich (a1) (a2)...

Abstract

Photoluminescence and absorption spectroscopy experiments were performed on as grown and thermally annealed GaAs1-xNx with nitrogen content in the range of 0.75–7.1%. At low temperature, the photoluminescence spectra exhibits two set of features: (i) a relatively broad peak at low energy and near to the vicinity of the predicted band gaps and (ii) a sharp excitonic feature at higher energy (about 100 meV for x>4%). Post growth thermal annealing processes systematically favor stronger excitonic emissions, and a notable intensity reduction of the deeper (defect related) luminescence. The low temperature binding energy of the higher energy excitonic peak is found to be consistent with the increase of the electronic effective masses. A careful examination of the data obtained in this work suggests that for higher nitrogen content (x>4%), the fundamental band gap of GaAsN is located at significantly higher energies than those commonly accepted for these alloys.

Copyright

Corresponding author

* Prof. Alex Freundlich: Email afreundlich@uh.edu; phone 713–743–3621; Fax 713–747–7724

References

Hide All
1. Kurst, S.R., Allermann, A.A., Jones, D.E., Gee, J.M., Banas, J.J. and Hammons, B.E., Appl. Phys. Lett. 74, 729 (1999).
2. Kent, P.R.C. and Zunger, A., Appl. Phys. Lett. 82, 559 (2003).
3. Taliercio, T., Intartaglia, R., Gil, B., Lefebvre, P., Bretagnon, T., Tisch, U., Finkman, E., Salzman, J., Pinault, M.-A., Laugt, K. and Tournie, E., Phys. Rev. B 69, 073303 (2004).
4. Shan, W., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R., Xin, H.P. and Tu, C.W., Phys. Stat. Sol. (b) 223, 75 (2001).
5. Skierbiszewski, C., Perlin, P., Wisniewski, P., Suski, T., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W., Haller, E.E., Geisz, J.F. and Olson, J.M., Appl. Phys. Lett. 76, 2409 (2000).
6. Francoeur, S., Sivaraman, G., Qiu, Y., Nikishin, S. and Temkin, H., Appl. Phys. Lett. 72, 1857 (1998).
7. Bi, W.G. and Tu, C.W., Appl. Phys. Lett. 70, 1608 (1997)
8. Loke, W.K., Yoon, S.F., Wang, S.Z., Ng, T.K. and Fan, W.J., J. Appl. Phys. 91, 4900 (2002).
9. Rao, E.V.K., Ougazzaden, A., Le Bellego, Y. and Juhel, M., Appl. Phys. Lett. 72, 1409 (1998).
10. Grenouillet, L., Bru-Chevallier, C., Giullot, G., Gilet, P., Duvaut, P., Vannuffel, C., Million, A. and Chenevas-Paule, A., Appl. Phys. Lett. 76, 2241 (2000).
11. Fotkatzikis, A., Pinault, M.-A., Freundlich, A., Appl. Phys. Lett. 85, 2432 (2004)
12. Pinault, M.A., and Freundlich, A., private copmmunication
13. Makimoto, T., Sato, H., Nishida, T. and Kobayashi, N., Appl. Phys. Lett. 70, 2984 (1997).
14. Zhang, Y., Mascarenhas, A., Geisz, J.F., Xin, H.P. and Tu, C.W., Phys. Rev. B 63, 085205 (2001).
15. Peyghambarian, N., “Introduction to semiconductor optics” ed. Peyghambarian, N., Koch, S.W. and Mysyrowicz, A. (Prentice-Hall Inc., 1993) p. 127.
16. Chuang, Shun Lien, “Physics of Optoelectronic Devices”, (Wiley, 1995) p.151
17. Buyanova, I. A., Chen, W. M. and Monemar, B., MRS Internet J. Nitride Semicond. Res. 6, 2 (2001).

Near band-edge and excitonic behavior of GaAsN epilayers grown by Chemical Beam Epitaxy

  • J. A. H Coaquira (a1), L. Bhusal (a1) (a2), W. Zhu (a1) (a2), A. Fotkatzikis (a1) (a2), M.-A. Pinault (a1), A. P. Litvinchuk (a1) (a2) and A. Freundlich (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed