Skip to main content Accessibility help

Nanowire and Nanotube Materials Prepared from Polymer Fiber Templates

  • Hong Dong (a1), Verrad Nyame (a1) and Wayne E. Jones (a1)


The preparation of well-defined nanomaterials using template methods is well established in the materials literature including porous ceramics, open-framework layered structures and porous membranes. In an effort to prepare thermally and electrically conductive nanowire and nanotube materials, we have recently prepared carbon tubes using polymer fibers produced from an electrostatic, non-mechanical “electrospinning” process as templates. Poly(methyl methacrylate) (PMMA) fibers with average diameter of 150–200 nm were initially fabricated as core materials. The fibers were subsequently coated with a thin layer (20∼50 nm) of conductive polypyrrole (PPy) by in-situ polymerization. Upon high temperature (1000 °C) treatment under inert atmosphere, the PMMA core fibers decomposed completely, followed by carbonization of the PPy wall. The structure of the carbon tubes subsequently produced was demonstrated by SEM and TEM. The carbon tubes were analyzed by infrared, elemental analysis and electron diffraction. The results show that the tubes are largely carbon with a small amount of nitrogen and a relatively low crystallinity.



Hide All
1. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., Lieber, C. M., Nature 1998, 394, 52.
2. Heer, W. A. d., Chatelain, A., Ugarte, D., Science 1995, 270, 1179.
3. Hornyak, G. L., Stockert, J. A., Martin, C. R., J. Phys. Chem. 1994, 98, 2963.
4. Parthasarathy, R. V., Martin, C. R., Chem. Mater. 1994, 6, 1627.
5. Klein, J. D., Herrick, R. D. I., Palmer, D., Sailor, M. J., Brumlik, C. J., Martin, C. R., Chem. Mater. 1993, 5, 902.
6. Parthasarathy, R. V., Phani, K. L. N., Martin, C. R., Adv. Mater. 1995, 7, 896.
7. Che, G., Lakshmi, B. B., Martin, C. R., Fisher, E. R., Chem. Mater. 1998, 10, 260.
8. Cepark, V. M., Hulteen, J. C., Che, G., Jirage, K. B., Lakshmi, B. B., Fisher, E. R., Martin, C. R., Chem. Mater. 1997, 9, 1065.
9. Reneker, D. H., Chun, I., Nanotechnology 1996, 7, 216.
10. MacDiarmid, A. G., Jones, W. E. Jr, Norris, I. D., Gao, J., Johnson, A. T. Jr, Pinto, N. J., Hone, J., Han, B., Ko, F. K., Okuzaki, H., Llaguno, M., Synth. Met. 2001, 119, 27.
11. Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., J. Appl. Phys. 2000, 87, 4531.
12. Fong, H., Chun, I., Reneker, D. H., Polymer 1999, 40, 4585.
13. Hou, H., Jun, Z., Reuning, A., Schaper, A., Wendorff, J. H., Greiner, A., Macromolecules 2002, 35, 24292431.
14. Caruso, R. A., Schattka, J. H., Greiner, A., Adv. Mater. 2001, 13, 1577.
15. Han, C., Lee, J., Yang, R., Chang, H. and Han, C., Chem. Mater. 1999, 11, 1806.
16. Han, C., Lee, J., Yang, R., and Han, C., Chem. Mater. 2001, 13, 2656.
17. Theron, A., Zussman, E., Yarin, A. L., Nanotechnology 2001, 12, 384.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed